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Background

Real-world phenomena

‘ Models ’
Y = f(X)

High-fidelity solver]—{ Surrogate solver ]

e Computational cost

e Inverse problems
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Theme Multi-stage manufacturing

Multi-stage manufacturing

e Definition: Substrate transformation via sequence of similar processes
(Mathematical model)

Draw plate

undrawn wire
Drawn wire

Multi-stage manu- ‘
facturing processes %L
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Theme Multi-stage manufacturing

Multi-stage manufacturing

Multi-stage manufacturing process

Finite element models
Y = f(X)

Surrogate solvers:

Response surface

Neural networks
Kriging
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Research question

Research questions

e How to quantify effect of manufacturing setup design variables on
product quality in multi-stage manufacturing processes?

e How to optimize apparatus design parameters for attaining desired
substrate properties?
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L '"troduction
Wire drawing
e Successive die passes for wire diameter reduction
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R trocloction
Wire drawing

e Successive die passes for wire diameter reduction
¢ Finite element simulation
e FE mesh

(1) Topology: Node and connectivity

(2) Field: Stress/Strain/Temperature data
o Material properties at each pass

Wire or rod
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R trocloction
Wire drawing

e Successive die passes for wire diameter reduction
¢ Finite element simulation
e FE mesh

(1) Topology: Node and connectivity
(2) Field: Stress/Strain/Temperature data

o Material properties at each pass
properties

o Goal: Build surrogate model for FE solver to predict material

Wire or rod
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Wire drawing  Introduction

Wire drawing

e Wire and die mesh at each pass

e Finite element simulation
e Extrusion mesh

(1) Topology: Node and connectivity
(2) Field: Stress/Strain/Temperature data

o Material properties at each pass

Die mesh across stages
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(a) Multiple wire meshes. (b) Multiple die meshes.
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R trocloction
Dynamic modeling

e Inputs at stage t (u;)

— ~~

ial direction
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Wire drawing  Design of experiments

Design of experiments

Experiments with Finite element Scatter plot of die angles and
solver as true value reduction ratio to evaluate FE solver
e Output variables :
Stress/Strain/Temperature at
FE nodes in each pass

e Input factors: :
Number of stages {4,...,8} §
Input wire diameter (in mm) [4,24]
Die angle (in degrees) [8,15] 2
Reduction ratio ((Din/Dout)?) [1.04, 1.56] s ﬁk"”‘ .

Reductlon ratlo (D, m/Dwz)

=} =) = = £ DA
Parth Paritosh (Purdue University) GPDM for multi-stage manufacturing May 30th 2017 10 / 38



N LSRRy D<+ie" of experimens
Modeling approach for wire drawing

(1) Spatial representation

(2) Dimensionality reduction

e Spatial symmetry

e Constitutive laws

Using principal component analysis
e Existence of linear manifold

(3) Regression map in low-dimensional space

Using Gaussian processes for reduced space dynamical map
e Quantifying epistemic uncertainty

e Enabling stochastic optimization
(4) Reconstruction

A
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Wire drawing Spatial representation

Spatial representation of wire mesh

e Wire mesh representation with finite element nodes

e Transformation: Normalization from mesh boundary
o Selection: Choose smallest subset of nodes representing substrate

Scaled wire mesh

040 Wire mesh and convex hull 12
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Original FE mesh

02 04 06 08 10 12

’ Transformed wire space

¢ Transformation equation
Di; = {Xij, Yij}
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Wire drawing Spatial representation

Spatial representation of wire mesh

o Representing wire “state”: Collating relevant nodal properties
e Input dimensionality: 288 (16 nodes, 18 nodal properties)

Feature plots

Feature plot

Feature values for wire substrate
Features at a stage of simulation

0 E 100 150 200 250 00 0 S 100 50 EY %0 EY
Considered features in space-property space Considered features in space-property space

Figure: Scaled feature values for wire at stage of manufacturing

o ) = = = Hae
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Wire drawing  Dynamical formulation

Notation for dynamical formulation

e t: Stage (Pass) number {0, 1, 2, ---}

e u;: Design variables at stage t [Die angles(6;), Reduction ratio (7)]

e y;: Wire “state” at stage t [Stress, strain, displacement, temperature]
e 1z;: Wire “state” in reduced dimensions at stage t (PCA descriptors)

e 2;: Relevant properties at stage t (Ex- Ultimate tensile strength)

Dynamics:
yer1 = f(ye, we) J
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Wire drawing Dynamical formulation

Dynamics:
ye+1 = f(ye, ue)
(+) Input diameter (+) Energy
(+) Die angles (+) Draw force
(+) Reduction ratio (+) Maximum temperature
(+) Draw speed (+) Ultimate tensile strength
Design inputs (U) Outputs (2)

|

oO—0— Wire state, Y —@—@

(+) Geometry(Coordinates)
(+) Properties (Stress, Dis-
placements)
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Equations

Wire drawing

Dynamical formulation

Dynamics:

yir1 = f(ye,ue)
Dimensionality reduction map:

x; = g(yt)
State equation:
Xpr1 = f(x¢, 1)
Property equation:
Zy = h(Xt) )
[m] = = =
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Dynamics in reduced space

Dynamical formulation

Node 1: Stress

1 1 Node 1:
Predicted Stress
Node 1: Strain PCA Descriptor Predicted Descriptor Node 1:
Predicted strain
: :
PCA PCA
reduction
19 17
Nede 16: Strain 288 / 288 Node 16
Predicted strain
288 Features 288 Predicted Features
=]

A
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Wire drawing  Dimensionality reduction

Dimensionality reduction: Principal component analysis

Accuracy of reduction reconstruction map
C(R(yk)) ~ Yk

Projecting vector yj along principal components:
Xr = WR Yk

Y = We - X

Select columns of x; based on variance along each component

Parth Paritosh (Purdue University) GPDM for multi-stage manufacturing May 30th 2017 18 / 38



Wire drawing  Dimensionality reduction

PCA on wire drawing

Variances obtained with PCA

1.00 :
005 +oroyflreniinn i /. .Cumulative variance ..
E —— Variances
+ Sum=0.95
) 0.80
e Correlation
matrix across
. 0.60
features in
training data set
040
e Score plot:
Selecting 17/288
descriptors
50 100 150 200 250 300

Number of eigenvectors for reconstruction
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SRR Dimersionality reduction
PCA on wire drawing

Prominent eigenvectors
Sa m pIe eigenvectors
as com ponents

—— Eigenvector 1
= = Eigenvector 2
- - Eigenvector 3
.
-0.15
0 50 100

: :
150 200 250 300
Features in location-property space
o
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SRR Dimersionality reduction
Validating PCA in wire drawing

e Comparing originals (green) with reduced-reconstructed feature (blue)
e Score value = 0.97

Reconstructed feature plots
Reconstructed feature plots

0 % 100 150 200 20 %0 3
Features in space-property space 0 50 100 150 200 250 300
Features in space-property space

o <& = E T 9Dace
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Wire drawing  Regression map

Gaussian process regression

e Learn regression map between scaled inputs and outputs across dies
in low-dimensions

X1 = f(Xt, O, Tt)

e Assume zero-mean Gaussian process with Squared-exponential kernels
for each output dimension r,

fr ~ GP(fT|OaC(" g qbr))
where,r = {1,--- ,dy}

e Learn optimal hyperparameters (¢,) and add observations to trained
Gaussian process
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Wire drawing  Regression map

Validating GPR results

Expensive steps in Gaussian processes

e Inverse of covariance matrix: Only for training observations

e Optimizing hyper-parameters: Can be used for adding observations
Validation in first output dimension

e Scatter plot for predicted and

< ¢ Quantile plots for predicted and
original samples

original samples

Probability plot for output dimension 0

‘\.

Original scaled feature values
Error values

15 -10 -05 00 05 10 15 20 25 4 3 2

. - 0 1 2 3 4
Predicted mean values Theoretic:

al quantiles
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Wire drawing  Regression map

GPR prediction samples

Comparing predictions from GP maps in low-dimensional space

* Sample 1 for GP regression map Sample 2 for GP regression map

feature plots for sample0
—— Predictive mean 0
X Observed data
Predictve error bars

feature plots for sample1

— Predictive mean 1
X Observed data

Predictive error bars

Coefficients
Coefficients

12 1 16 18 2 " . ®

6 8 0
PCA descriptors space

6 8 10
PCA descriptors space
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Wire drawing  Regression map

Step predictions

e Predicting step-ahead properties for validation
o Steps: PCA reduction — GP regression — PCA reconstruction

e Prediction quality correlated with input sequence and stages

e Sample 1 for step ahead

dicti e Sample 3 for step ahead
predictions

5 Feature overlay plots for sample 0 o Feature overlay plots for sample 3
—— True sample number0 —— True sample number3
—— Predicted sample number0 —— Predicted sample number3
2 Predictive error bars 8 Predictive error bars

4 El 100 150 200 250 0 0 50 100 150 20 250 300
Features in location-property space Features in location-property space

Parth Paritosh (Purdue University) GPDM for multi-stage manufacturing May 30th 2017 25 /38



Wire drawing  Regression map

Prediction on wire properties

Single step ahead wire property prediction

zg+1 = h(f(R(yx), ux))

QOriginal property values

-2 -1 0 1 2 3 4
Predicted mean values

Figure: Validating single stage predictions of Ultimate tensile strength on

verification data set.
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Wire drawing  Regression map

Multi-stage predictions, uncertainty quantification and
propagation

Plotting prediction uncertainties after multiple stages

o Comparisons across features and stages of prediction

18 properties: Stress, strain, temperature

Monte-carlo simulations for generating sample paths for initial wire
features yo and inputs (up,uy,---)

Vi1 = Cf(R(yx), ur))

Parth Paritosh (Purdue University) GPDM for multi-stage manufacturing May 30th 2017 27 / 38



Wire drawing results

Results

(1) Effects of training dataset size on prediction error

(2) Feature space predictions for a drawing setup

(3) Feature specific uncertainty propagation

(4) Wire property optimization
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Wire drawing results  Selecting training set size

1. Uncertainty quantification and training size

Comparisons over a prediction data set

350

300

250

200

150

Absolute sum of errors

100

Parth Paritosh (Purdue University)

Comparing sum of prediction error across size of training sets

500 1000 2000 4000
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Wire drawing results Feature space predictions

2. Feature space predictions for a drawing setup

Uncertainty in predicted features in stage 2 Uncertainty in predicted features in stage 3
— Prodets mean — Prodcts mean
. - Tuewe A - e
Prcicta e bars (0025, 09751 Praccive sro s 0025, 0975

Predictive quantiles over features
Predictive quantiles over features

0 0 " = ) o w0 " 0 E)
Considered features in space-property space Considered features in space-property space
Uncertainty in predicted features in stage 4 Uncertainty in predicted features in stage 5
— Pt mean
- Tuewe

Pradcive ororbars [0.025,0075]

/e quantiles over features
/e quantiles over features

= @0 o w 0
Considered features in space-property space

0 0
Considered features in space-property space

Fi : Multi ictions for wi i 22.
igure: Multi stage predictions for wire dra;/vmgﬁ]setupi o
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Wire drawing results Predicting nodal features

3. Feature specific uncertainty propagation

Predicting Axial velocity for simulation 22 Prggi@[;ng Pressure component of stress for simulation 22
- o Tue e Tue

E 05
o .

==
[ =

Axial velocity
&

-0

Pressure component of stress

2 3 4 5 0 2 3 4 5
Pass number Pass number
(a) Axial velocity. (b) Pressure component of stress.
o 5 = = = A
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Wire drawing results Predicting nodal features

3. Feature specific uncertainty propagation

S[’Pf@dicting Principal shear stress for simulation 22 5 1fredicting Principal stress 1 for simulation 22
o True o True

i
55 2 !
i
i

1
9
B 45 —— - E
& 40 e E ] 2 S '
2 ' | 24 —_ : i
5 : g ‘ ; =
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£ 30 0 o ! I
A S : i :
25 : s ! ° EI o
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15 s -5
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Pass number Pass number
(c) Principal shear stress. (d) Principal stress.
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Wire drawing results Optimizing expected wire property

4. Optimization

e Optimize "Expected ultimate tensile strength” (z7) of final product
e Using surrogate model made with GP and PCA
e Design variables: Die angles (g, - ,0r)

Where single step-ahead property prediction is given as,

zr+1 = h(f(R(yx), ux))

Table: Details of simulation setup 7 in validation data set.

# Stage 1 | Stage 2 | Stage 3 | Stage 4 | Stage 5
Diameter sequence | 14.14 13.50 11.90 10.30 10.13
Die angles - 13.89 13.43 12.55 9.016

Parth Paritosh (Purdue University)
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Wire drawing results Optimizing expected wire property

4. Optimization

Table: UTS improvement in multi-parameter simulation

Die Angle Expected UTS uTsS Function
# (degrees) (GP Model) | (FE Model) | evaluations
Original [13.9, 13.43, 12.5, 9.0] 1627.72 1610 -
Basin-hopping | [12.6, 11.9, 11.84, 13.66] 1640.17 1611 1438
Differential | |15 76, 14.80, 14.92, 14.01] | 166337 1625 1651
Evolution
Random search | [14.14, 14.73, 14.97, 14.65] | 1657.53 1622 1000

o Differential evolution optimizes better due to exploration based
strategy

o Extension to stochastic optimization: Using predictive variances with
Expected improvement based Efficient global optimization
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Wire drawing results

4. Optimization

Optimizing expected wire property

Table: Run time comparison in multi-parameter simulation

(1414 evaluations)

FE solver | GP solver (MC samples)
True 1 100 1000
Evaluations Single-step 29 s 0.002 0.2 2
Multi-step (4) 89s 0.01 1 10
. Basin-hopping .
'\(/)h:)lttil:itzeaii(()t) (1438 evaluations) 35.55 hrs - 24 min 4 hrs
Differential evolution 40.81 hrs i 975 min | 4.58 hrs
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Wire drawing results ~ Summary

Summary for wire drawing problem

(1) Spatial representation

e Normalization from boundary to common space
o Selecting least set of nodes for representing substrate “state”
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Wire drawing results ~ Summary

Summary for wire drawing problem

(1) Spatial representation

e Normalization from boundary to common space
o Selecting least set of nodes for representing substrate “state”

(2) Dimensionality reduction

e Spatial symmetry
o Constitutive laws

Using principal component analysis
o Capturing dynamics in linear manifold
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Wire drawing results ~ Summary

Summary for wire drawing problem

(1) Spatial representation

e Normalization from boundary to common space
o Selecting least set of nodes for representing substrate “state”

(2) Dimensionality reduction

e Spatial symmetry
o Constitutive laws

Using principal component analysis
o Capturing dynamics in linear manifold
(3) Regression map in low-dimensional space
Using Gaussian processes for reduced space dynamical map

o Quantifying epistemic uncertainty
e Enabling stochastic optimization with predictive variance
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Wire drawing results ~ Summary

Summary for wire drawing problem

(1) Spatial representation

e Normalization from boundary to common space
o Selecting least set of nodes for representing substrate “state”

(2) Dimensionality reduction

e Spatial symmetry
o Constitutive laws

Using principal component analysis
o Capturing dynamics in linear manifold
(3) Regression map in low-dimensional space
Using Gaussian processes for reduced space dynamical map
o Quantifying epistemic uncertainty
o Enabling stochastic optimization with predictive variance
(4) Optimization
Global optimization of expected substrate property
e Extension to stochastic optimization
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Extending to multi-stage manufacturing

Extending to multi-stage manufacturing processes
Hot rolling

e Spatial representation
e Dimensionality reduction and regression mapping
=] (=)
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