Gaussian Process Dynamical Models for designing multi-stage manufacturing process M.S. thesis defense

Parth Paritosh Ilias Bilionis (ME, Co-chair) Jitesh Panchal (ME, Co-chair) Guang Lin (MA, Member)

School of Mechanical engineering Purdue University

May 30th 2017

Parth Paritosh (Purdue University) GPDM for multi-stage manufacturing May 30th 2017

1 / 38

Background

Parth Paritosh (Purdue University) GPDM for multi-stage manufacturing May 30th 2017

Э

990

2 / 38

Background

Parth Paritosh (Purdue University) GPDM for multi-stage manufacturing May 30th 2017

590

2 / 38

3

Overview

- 3 Wire drawing
- 4 Wire drawing results
- 5 Extending to multi-stage manufacturing

900

- 4 ⊒ →

▶ < Ξ >

Multi-stage manufacturing

• Definition: Substrate transformation via sequence of similar processes (Mathematical model)

Multi-stage manufacturing

Finite element models Y = f(X)

Surrogate solvers: Response surface Neural networks Kriging

Parth Paritosh (Purdue University)

-

Research questions

• How to quantify effect of manufacturing setup design variables on product quality in multi-stage manufacturing processes?

• How to optimize apparatus design parameters for attaining desired substrate properties?

イロト イポト イヨト イヨト

- Successive die passes for wire diameter reduction
- Finite element simulation
 - FE mesh
 - (1) Topology: Node and connectivity
 - (2) Field: Stress/Strain/Temperature data
 - Material properties at each pass
- Goal: Build surrogate model for FE solver to predict material properties

3

< ∃ >

- Successive die passes for wire diameter reduction
- Finite element simulation
 - FE mesh
 - (1) Topology: Node and connectivity
 - (2) Field: Stress/Strain/Temperature data
 - Material properties at each pass
- Goal: Build surrogate model for FE solver to predict material properties

< ∃ >

- Successive die passes for wire diameter reduction
- Finite element simulation
 - FE mesh
 - (1) Topology: Node and connectivity
 - (2) Field: Stress/Strain/Temperature data
 - Material properties at each pass
- Goal: Build surrogate model for FE solver to predict material properties

< ∃ >

- Wire and die mesh at each pass
- Finite element simulation
 - Extrusion mesh
 - (1) Topology: Node and connectivity
 - (2) Field: Stress/Strain/Temperature data
 - Material properties at each pass

Introduction

Dynamic modeling

• Inputs at stage t
$$(\mathbf{u}_t)$$
 : $heta_t$, $r_t = (rac{d_{in}}{d_{out}})^2$

990

Design of experiments

Experiments with Finite element solver as true value

- Output variables : Stress/Strain/Temperature at FE nodes in each pass
- Input factors:

Number of stages	$\{4,, 8\}$
Input wire diameter (in mm)	[4, 24]
Die angle (in degrees)	[8, 15]
Reduction ratio $((D_{in}/D_{out})^2)$	[1.04, 1.56]

Scatter plot of die angles and reduction ratio to evaluate FE solver

Modeling approach for wire drawing

(1) Spatial representation

(2) Dimensionality reduction

- Spatial symmetry
- Constitutive laws

Using principal component analysis

- Existence of linear manifold
- (3) Regression map in low-dimensional space Using Gaussian processes for reduced space dynamical map
 - Quantifying epistemic uncertainty
 - Enabling stochastic optimization

(4) Reconstruction

- - E - b

Spatial representation of wire mesh

- Wire mesh representation with finite element nodes
 - Transformation: Normalization from mesh boundary
 - Selection: Choose smallest subset of nodes representing substrate

• Transformation equation

$$\mathbf{D}_{ij} = \{\mathbf{X}_{ij}, \, \mathbf{Y}_{ij}\}$$

Parth Paritosh (Purdue University)

Spatial representation of wire mesh

- Representing wire "state": Collating relevant nodal properties
- Input dimensionality: 288 (16 nodes, 18 nodal properties)

Figure: Scaled feature values for wire at stage of manufacturing

Notation for dynamical formulation

- t: Stage (Pass) number $\{0, 1, 2, \cdots\}$
- u_t : Design variables at stage t [Die angles(θ_t), Reduction ratio (r_t)]
- y_t : Wire "state" at stage t [Stress, strain, displacement, temperature]
- x_t : Wire "state" in reduced dimensions at stage t (PCA descriptors)
- z_t : Relevant properties at stage t (Ex- Ultimate tensile strength)

Dynamics:

$$\mathbf{y}_{t+1} = \tilde{f}(\mathbf{y}_t, \mathbf{u}_t)$$

Parth Paritosh (Purdue University) GPDM for multi-stage manufacturing May 30th 2017

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

14 / 38

(+) Geometry(Coordinates)(+) Properties (Stress, Displacements)

イロト 不得 トイヨト イヨト 二日

Jac.

Equations

Dynamics:

$$\mathbf{y}_{t+1} = \tilde{f}(\mathbf{y}_t, \mathbf{u}_t)$$

Dimensionality reduction map:

$$\mathbf{x}_t = \mathbf{g}(\mathbf{y}_t)$$

State equation:

$$\mathbf{x}_{t+1} = f(\mathbf{x}_t, \mathbf{u}_t)$$

Property equation:

$$\mathbf{z}_t = \mathbf{h}(\mathbf{x}_t)$$

Parth Paritosh (Purdue University)

GPDM for multi-stage manufacturing

May 30th 2017 16 / 38

Э

590

◆ロト ◆信 ト ◆注 ト ◆注 ト

Dynamical formulation

Dynamics in reduced space

イロト 不得 トイヨト イヨト 二日

Sac

Dimensionality reduction: Principal component analysis

Accuracy of reduction reconstruction map

 $\mathcal{C}(\mathcal{R}(\mathbf{y}_k)) \approx \mathbf{y}_k$

Projecting vector \mathbf{y}_k along principal components:

 $\mathbf{x}_k = \mathbf{W}_R \cdot \mathbf{y}_k$

$$\tilde{\mathbf{y}}_k = \mathbf{W}_C \cdot \mathbf{x}_k$$

Select columns of \mathbf{x}_k based on variance along each component

▲ロ ▶ ▲帰 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

PCA on wire drawing

PCA on wire drawing

Sample eigenvectors as components

4 日

Parth Paritosh (Purdue University) GPDM for multi-stage manufacturing May 3

-

990

Validating PCA in wire drawing

- Comparing originals (green) with reduced-reconstructed feature (blue)
- Score value = 0.97

Gaussian process regression

• Learn regression map between scaled inputs and outputs across dies in low-dimensions

$$\mathbf{x}_{t+1} = \mathbf{f}(\mathbf{x}_t, \theta_t, r_t)$$

• Assume zero-mean Gaussian process with Squared-exponential kernels for each output dimension r,

$$f_r \sim GP(f_r|0, c(\cdot, \cdot; \phi_r))$$

where, $r = \{1, \cdots, d_y\}$

• Learn optimal hyperparameters (ϕ_r) and add observations to trained Gaussian process

イロト イポト イヨト

22 / 38

Validating GPR results

Expensive steps in Gaussian processes

- Inverse of covariance matrix: Only for training observations
- Optimizing hyper-parameters: Can be used for adding observations

Validation in first output dimension

• Scatter plot for predicted and original samples

 Quantile plots for predicted and original samples

Parth Paritosh (Purdue University)

GPDM for multi-stage manufacturing

May 30th 2017 23 / 38

Regression map

GPR prediction samples

Comparing predictions from GP maps in low-dimensional space

- Sample 1 for GP regression map
- feature plots for sample0 feature plots for sample1 10 10 Predictive mean 0 — Predictive mean * Observed data × Observed data Predictive error bars 5 Coefficients Coefficients -5 -5 -10 -10 -15 0 PCA descriptors space PCA descriptors space

-

Sample 2 for GP regression map

< A.

Step predictions

- Predicting step-ahead properties for validation
- Steps: PCA reduction \rightarrow GP regression \rightarrow PCA reconstruction
- Prediction quality correlated with input sequence and stages
- Sample 1 for step ahead predictions

• Sample 3 for step ahead predictions

Parth Paritosh (Purdue University)

GPDM for multi-stage manufacturing

Prediction on wire properties

Single step ahead wire property prediction

$$\tilde{\mathbf{z}}_{k+1} = \mathbf{h}(\mathbf{f}(\mathcal{R}(\mathbf{y}_k), \mathbf{u}_k))$$

Figure: Validating single stage predictions of Ultimate tensile strength on verification data set. $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Box \rangle$

Parth Paritosh (Purdue University)

GPDM for multi-stage manufacturing

May 30th 2017 26 / 38

Multi-stage predictions, uncertainty quantification and propagation

- Plotting prediction uncertainties after multiple stages
- Comparisons across features and stages of prediction
- 18 properties: Stress, strain, temperature
- Monte-carlo simulations for generating sample paths for initial wire features y_0 and inputs (u_0, u_1, \cdots)

$$\tilde{\mathbf{y}}_{k+1} = \mathcal{C}(\mathbf{f}(\mathcal{R}(\mathbf{y}_k), \mathbf{u}_k))$$

Results

(1) Effects of training dataset size on prediction error

(2) Feature space predictions for a drawing setup

(3) Feature specific uncertainty propagation

(4) Wire property optimization

∃ ► < ∃ ►</p>

3

1. Uncertainty quantification and training size

Comparisons over a prediction data set

2. Feature space predictions for a drawing setup

Figure: Multi stage predictions for wire drawing setup 22.

Parth Paritosh (Purdue University)

GPDM for multi-stage manufacturing

May 30th 2017 30 / 38

3. Feature specific uncertainty propagation

Predicting Pressure component of stress for simulation 22

(b) Pressure component of stress.

990

3

1

3. Feature specific uncertainty propagation

590

32 / 38

3

-

4. Optimization

- Optimize "Expected ultimate tensile strength" (z_T) of final product
- Using surrogate model made with GP and PCA
- Design variables: Die angles $(\theta_0, \cdots, \theta_T)$

Where single step-ahead property prediction is given as,

$$\tilde{\mathbf{z}}_{k+1} = \mathbf{h}(\mathbf{f}(\mathcal{R}(\mathbf{y}_k), \mathbf{u}_k))$$

Table: Details of simulation setup 7 in validation data set.

#	Stage 1	Stage 2	Stage 3	Stage 4	Stage 5
Diameter sequence	14.14	13.50	11.90	10.30	10.13
Die angles	-	13.89	13.43	12.55	9.016

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

4. Optimization

Table: UTS improvement in multi-parameter simulation

#	Die Angle	Expected UTS	UTS	Function
	(degrees)	(GP Model)	(FE Model)	evaluations
Original	[13.9, 13.43, 12.5, 9.0]	1627.72	1610	-
Basin-hopping	[12.6, 11.9, 11.84, 13.66]	1640.17	1611	1438
Differential		1662.27	1625	1651
Evolution		1003.37	1025	
Random search	[14.14, 14.73, 14.97, 14.65]	1657.53	1622	1000

- Differential evolution optimizes better due to exploration based strategy
- Extension to stochastic optimization: Using predictive variances with Expected improvement based Efficient global optimization

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

4. Optimization

Table: Run time comparison in multi-parameter simulation

		FE solver	GP solver (MC samples)		
		True	1	100	1000
Evaluations	Single-step	29 s	0.002	0.2	2
	Multi-step (4)	89 s	0.01	1	10
Multi-step (4) Optimization	Basin-hopping (1438 evaluations)	35.55 hrs	-	24 min	4 hrs
	Differential evolution (1414 evaluations)	40.81 hrs	-	27.5 min	4.58 hrs

Parth Paritosh (Purdue University) GPDM for multi-stage manufacturing May 30th

∃ <\0<</p>

イロト イポト イヨト イヨト

(1) Spatial representation

- Normalization from boundary to common space
- Selecting least set of nodes for representing substrate "state"
- (2) Dimensionality reduction
 - Spatial symmetry
 - Constitutive laws
 - Using principal component analysis
 - Capturing dynamics in linear manifold
- (3) Regression map in low-dimensional space Using Gaussian processes for reduced space dynamical map
 - Quantifying epistemic uncertainty
 - Enabling stochastic optimization with predictive variance
- (4) Optimization
 - Global optimization of expected substrate property
 - Extension to stochastic optimization

イロト イロト イヨト イ

- (1) Spatial representation
 - Normalization from boundary to common space
 - Selecting least set of nodes for representing substrate "state"
- (2) Dimensionality reduction
 - Spatial symmetry
 - Constitutive laws
 - Using principal component analysis
 - Capturing dynamics in linear manifold
- (3) Regression map in low-dimensional space Using Gaussian processes for reduced space dynamical map
 - Quantifying epistemic uncertainty
 - Enabling stochastic optimization with predictive variance
- (4) Optimization
 - Global optimization of expected substrate property
 - Extension to stochastic optimization

ヨト - ヨト

- (1) Spatial representation
 - Normalization from boundary to common space
 - Selecting least set of nodes for representing substrate "state"
- (2) Dimensionality reduction
 - Spatial symmetry
 - Constitutive laws

Using principal component analysis

- Capturing dynamics in linear manifold
- (3) Regression map in low-dimensional space Using Gaussian processes for reduced space dynamical map
 - Quantifying epistemic uncertainty
 - Enabling stochastic optimization with predictive variance
- (4) Optimization
 - Global optimization of expected substrate property
 - Extension to stochastic optimization

・ コ ト ・ 雪 ト ・ ヨ ト ・

- (1) Spatial representation
 - Normalization from boundary to common space
 - Selecting least set of nodes for representing substrate "state"
- (2) Dimensionality reduction
 - Spatial symmetry
 - Constitutive laws

Using principal component analysis

- Capturing dynamics in linear manifold
- (3) Regression map in low-dimensional space Using Gaussian processes for reduced space dynamical map
 - Quantifying epistemic uncertainty
 - Enabling stochastic optimization with predictive variance
- (4) Optimization

Global optimization of expected substrate property

• Extension to stochastic optimization

Extending to multi-stage manufacturing processes

Hot rolling

- Spatial representation
- Dimensionality reduction and regression mapping

Parth Paritosh (Purdue University)

Parth Paritosh (Purdue University)

GPDM for multi-stage manufacturing

May 30th 2017 38 / 38