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Theme Multi-stage manufacturing

Multi-stage manufacturing

• Definition: Substrate transformation via sequence of similar processes
(Mathematical model)

Multi-stage manu-
facturing processes
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Theme Multi-stage manufacturing

Multi-stage manufacturing

Multi-stage manufacturing process

Finite element models
Y = f(X)

Surrogate solvers:
Response surface
Neural networks

Kriging
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Research question

Research questions

• How to quantify effect of manufacturing setup design variables on
product quality in multi-stage manufacturing processes?

• How to optimize apparatus design parameters for attaining desired
substrate properties?
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Wire drawing Introduction

Wire drawing

• Successive die passes for wire diameter reduction
• Finite element simulation

• FE mesh
(1) Topology: Node and connectivity
(2) Field: Stress/Strain/Temperature data

• Material properties at each pass

• Goal: Build surrogate model for FE solver to predict material
properties
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Wire drawing Introduction

Wire drawing

• Wire and die mesh at each pass

• Finite element simulation
• Extrusion mesh

(1) Topology: Node and connectivity
(2) Field: Stress/Strain/Temperature data

• Material properties at each pass

(a) Multiple wire meshes. (b) Multiple die meshes.
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Wire drawing Introduction

Dynamic modeling

• Inputs at stage t (ut) : θt, rt = ( din
dout

)2

yt

yt+1

din dout

θt

Axial direction

Radial

Direction
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Wire drawing Design of experiments

Design of experiments

Experiments with Finite element
solver as true value

• Output variables :
Stress/Strain/Temperature at
FE nodes in each pass

• Input factors:

Number of stages {4, ..., 8}
Input wire diameter (in mm) [4, 24]

Die angle (in degrees) [8, 15]
Reduction ratio ((Din/Dout)

2) [1.04, 1.56]

Scatter plot of die angles and
reduction ratio to evaluate FE solver
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Wire drawing Design of experiments

Modeling approach for wire drawing

(1) Spatial representation

(2) Dimensionality reduction
• Spatial symmetry
• Constitutive laws

Using principal component analysis
• Existence of linear manifold

(3) Regression map in low-dimensional space
Using Gaussian processes for reduced space dynamical map

• Quantifying epistemic uncertainty
• Enabling stochastic optimization

(4) Reconstruction
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Wire drawing Spatial representation

Spatial representation of wire mesh

• Wire mesh representation with finite element nodes
• Transformation: Normalization from mesh boundary
• Selection: Choose smallest subset of nodes representing substrate

Original FE mesh Transformed wire space

• Transformation equation

Dij = {Xij , Yij}
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Wire drawing Spatial representation

Spatial representation of wire mesh

• Representing wire “state”: Collating relevant nodal properties

• Input dimensionality: 288 (16 nodes, 18 nodal properties)

Figure: Scaled feature values for wire at stage of manufacturing
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Wire drawing Dynamical formulation

Notation for dynamical formulation

• t: Stage (Pass) number {0, 1, 2, · · · }
• ut: Design variables at stage t [Die angles(θt), Reduction ratio (rt)]

• yt: Wire “state” at stage t [Stress, strain, displacement, temperature]

• xt: Wire “state” in reduced dimensions at stage t (PCA descriptors)

• zt: Relevant properties at stage t (Ex- Ultimate tensile strength)

Dynamics:

yt+1 = f̃(yt,ut)
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Wire drawing Dynamical formulation

Dynamics:

yt+1 = f̃(yt,ut)

Wire state, Y

Design inputs (U) Outputs (Z)

(+) Geometry(Coordinates)
(+) Properties (Stress, Dis-
placements)

(+) Input diameter
(+) Die angles
(+) Reduction ratio
(+) Draw speed

(+) Energy
(+) Draw force
(+) Maximum temperature
(+) Ultimate tensile strength
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Wire drawing Dynamical formulation

Equations

Dynamics:

yt+1 = f̃(yt,ut)

Dimensionality reduction map:

xt = g(yt)

State equation:

xt+1 = f(xt,ut)

Property equation:

zt = h(xt)

Parth Paritosh (Purdue University) GPDM for multi-stage manufacturing May 30th 2017 16 / 38



Wire drawing Dynamical formulation

Dynamics in reduced space
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Wire drawing Dimensionality reduction

Dimensionality reduction: Principal component analysis

Accuracy of reduction reconstruction map

C(R(yk)) ≈ yk

Projecting vector yk along principal components:

xk = WR · yk

ỹk = WC · xk

Select columns of xk based on variance along each component
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Wire drawing Dimensionality reduction

PCA on wire drawing

• Correlation
matrix across
features in
training data set

• Score plot:
Selecting 17/288
descriptors
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Wire drawing Dimensionality reduction

PCA on wire drawing

Sample eigenvectors
as components
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Wire drawing Dimensionality reduction

Validating PCA in wire drawing

• Comparing originals (green) with reduced-reconstructed feature (blue)

• Score value = 0.97
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Wire drawing Regression map

Gaussian process regression

• Learn regression map between scaled inputs and outputs across dies
in low-dimensions

xt+1 = f(xt, θt, rt)

• Assume zero-mean Gaussian process with Squared-exponential kernels
for each output dimension r,

fr ∼ GP (fr|0, c(·, ·;φr))
where, r = {1, · · · , dy}

• Learn optimal hyperparameters (φr) and add observations to trained
Gaussian process
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Wire drawing Regression map

Validating GPR results

Expensive steps in Gaussian processes

• Inverse of covariance matrix: Only for training observations

• Optimizing hyper-parameters: Can be used for adding observations

Validation in first output dimension

• Scatter plot for predicted and
original samples

• Quantile plots for predicted and
original samples
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Wire drawing Regression map

GPR prediction samples

Comparing predictions from GP maps in low-dimensional space

• Sample 1 for GP regression map • Sample 2 for GP regression map
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Wire drawing Regression map

Step predictions

• Predicting step-ahead properties for validation

• Steps: PCA reduction → GP regression → PCA reconstruction

• Prediction quality correlated with input sequence and stages

• Sample 1 for step ahead
predictions

• Sample 3 for step ahead
predictions
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Wire drawing Regression map

Prediction on wire properties

Single step ahead wire property prediction

z̃k+1 = h(f(R(yk),uk))

Figure: Validating single stage predictions of Ultimate tensile strength on
verification data set.
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Wire drawing Regression map

Multi-stage predictions, uncertainty quantification and
propagation

• Plotting prediction uncertainties after multiple stages

• Comparisons across features and stages of prediction

• 18 properties: Stress, strain, temperature

• Monte-carlo simulations for generating sample paths for initial wire
features y0 and inputs (u0,u1, · · · )

ỹk+1 = C(f(R(yk),uk))
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Wire drawing results

Results

(1) Effects of training dataset size on prediction error

(2) Feature space predictions for a drawing setup

(3) Feature specific uncertainty propagation

(4) Wire property optimization
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Wire drawing results Selecting training set size

1. Uncertainty quantification and training size

Comparisons over a prediction data set
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Wire drawing results Feature space predictions

2. Feature space predictions for a drawing setup

Figure: Multi stage predictions for wire drawing setup 22.
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Wire drawing results Predicting nodal features

3. Feature specific uncertainty propagation

(a) Axial velocity. (b) Pressure component of stress.
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Wire drawing results Predicting nodal features

3. Feature specific uncertainty propagation

(c) Principal shear stress. (d) Principal stress.
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Wire drawing results Optimizing expected wire property

4. Optimization

• Optimize “Expected ultimate tensile strength” (zT ) of final product

• Using surrogate model made with GP and PCA

• Design variables: Die angles (θ0, · · · , θT )

Where single step-ahead property prediction is given as,

z̃k+1 = h(f(R(yk),uk))

Table: Details of simulation setup 7 in validation data set.

# Stage 1 Stage 2 Stage 3 Stage 4 Stage 5
Diameter sequence 14.14 13.50 11.90 10.30 10.13

Die angles - 13.89 13.43 12.55 9.016
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Wire drawing results Optimizing expected wire property

4. Optimization

Table: UTS improvement in multi-parameter simulation

#
Die Angle
(degrees)

Expected UTS
(GP Model)

UTS
(FE Model)

Function
evaluations

Original [13.9, 13.43, 12.5, 9.0] 1627.72 1610 -

Basin-hopping [12.6, 11.9, 11.84, 13.66] 1640.17 1611 1438

Differential
Evolution

[12.76, 14.89, 14.92, 14.01] 1663.37 1625 1651

Random search [14.14, 14.73, 14.97, 14.65] 1657.53 1622 1000

• Differential evolution optimizes better due to exploration based
strategy

• Extension to stochastic optimization: Using predictive variances with
Expected improvement based Efficient global optimization
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Wire drawing results Optimizing expected wire property

4. Optimization

Table: Run time comparison in multi-parameter simulation

FE solver GP solver (MC samples)
True 1 100 1000

Evaluations
Single-step 29 s 0.002 0.2 2

Multi-step (4) 89 s 0.01 1 10

Multi-step (4)
Optimization

Basin-hopping
(1438 evaluations)

35.55 hrs - 24 min 4 hrs

Differential evolution
(1414 evaluations)

40.81 hrs - 27.5 min 4.58 hrs
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Wire drawing results Summary

Summary for wire drawing problem

(1) Spatial representation
• Normalization from boundary to common space
• Selecting least set of nodes for representing substrate “state”

(2) Dimensionality reduction
• Spatial symmetry
• Constitutive laws

Using principal component analysis
• Capturing dynamics in linear manifold

(3) Regression map in low-dimensional space
Using Gaussian processes for reduced space dynamical map

• Quantifying epistemic uncertainty
• Enabling stochastic optimization with predictive variance

(4) Optimization
Global optimization of expected substrate property

• Extension to stochastic optimization
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Extending to multi-stage manufacturing

Extending to multi-stage manufacturing processes

Hot rolling

• Spatial representation

• Dimensionality reduction and regression mapping
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Thank you.
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