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Introduction

Distributed sensing with relative measurements

What are networks based on relative measurements?

Key features for inference algorithms:

m Rely on localized signals

m Fast computation and low storage at nodes
m Communication efficiency
[

Large scale networks with temporal variations
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Introduction e § Problem setup

Problem setup

m Sensing agents N = (51, ,S,) ! ' /.
with neighbor set N; 0 \ ’
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Introduction e § Problem setup

Problem setup

_ Y1
m Sensing agents N = (51, , Sp) ﬁ3 - ﬁ

with neighbor set \V;
m Agent state: x; € R™ . ) /)
m Neighbor based measurement models it Vo

pi(zil{xi}tjens) = Ijen: PilZilxi, X)) ﬁl ~~~~~~ ﬁz
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Introduction e § Problem setup

Problem setup
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Introduction e § Problem setup

Problem setup

m Sensing agents N = (51, ,S,) s,
with neighbor set N; €3 --- ﬁ

m Agent state: x; € R™ /,! \ //

m Neighbor based measurement models \\ //
Pi(zil{xi }jens) = [jen; Pi(Zilxi, X))

m Local communication network, (Weighted ﬁl ------- —»ﬁz
adjacency matrix: A) - -

m How to find the true value of agent states xi, - - - , x, with relative measurements
received over the given communication network?
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Introduction e § Research Question

Agent domains for distributed estimation

How do we select the domain X of agent i's estimate?

{xi} {xi,%} {Xj}jen; {xi}jen
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Introduction e § Research Question

Agent domains for distributed estimation
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Introduction e § Research Question

Agent domains for distributed estimation
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Introduction e § Research Question

Existing solutions

How do we select the domain X of agent i's estimate?
{xi} {xi. %} X }jen: {xj}jen
(4 (4

Belief propagation ---------------- [ Geometric updates

m Yedidia et al.}(2003): Learning marginal density at each agent state via Belief
propagation in forest type graphs

m Nedich et al.?(2017): Convergence rates of geometric averaging of inferences for
the decentralized communication problem

1 Jonathan S. Yedidia, William T. Freeman, and Yair Weiss. "Understanding belief propagation and its generalizations.” Exploring artificial
intelligence in the new millennium 8 (2003): 236-239.

2Angelia Nedi¢, Alex Olshevsky, and César A. Uribe. " Fast convergence rates for distributed non-bayesian learning.” |IEEE Transactions on
Automatic Control 62.11 (2017): 5538-5553.
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Introduction e § Research Question

Research question

How to design an inference algorithm to learn true value of variables in X; at agent /
using noisy measurements and neighbor estimates available at each time step?
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Introduction e § Research Question

Outline

Introduction
m Problem setup
m Research Question

Objective and proposed algorithms
m Centralized
m Decentralized communication
m Decentralized communication and storage
m Gaussian marginal consensus algorithm

Simulation

Summary and future work
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Objective and proposed algorithms

Consistent inference with optimization

m 5(X): Unknown density over X' = xi.,
® q(z1:n,t) = [;ep 9i(2i,¢| X*): Sampled data generating density
® q(z1:0,t|X) = [1;cp a(2it|X7): Known likelihood functions for agent i

Divergence based objective

m KL-divergence objective function

srgmin{ B [Da(aznne)lla(zrn )]

—agmn{ B 5 loglalena))]

P zl:n,t""q(zl:n,t) X
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Objective and proposed algorithms

Objective function

Centralized objective

m Time-averaged objective function

argmln{ ZF[P,Zlnt]}

F[p; zl:n,t] = )}Eﬁ[_ |0g(Q(21:n,t|X))]

Summable property of the objective function
Using independence between agent observations z; ;,

F(p; zi:ne] = Z Filpi, zi.e] = ZXIE&[— log(a;(zi,:|X))]
i=1 i=1 '
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Objective and proposed algorithms e § Centralized

Centralized algorithm

m p;: Estimated probability density function at time t
= %[pt,zl;,,?t]: Gradient of centralized objective function

m The sequence {a;} is square-summable but non-summable.

Stochastic mirror descent

= arg min 5—F[ Zint| —|—iD (pllpt)
Pt+1 = gpef op Pt; Z1:nt], P o KLAP||Pt

= prr1(X) o q(Z1:0,t|X) ¥ pe(X)
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Objective and proposed algorithms e § Decentralized communication

Decentralized objective

Decentralized communication with full state estimates (X; = X))
m Consensus: Ensuring that agents achieve the same estimate
m Likelihood update: Including likelihood information at each time step

pi(X) = argmin E E [ log(a;(zi¢|X))] (Agent objective)
~pi

Pi | zj~aq;(zi+
pi(X) = pj(X), YjeWN; (Consensus constraint)
m (Assumption) The communication network is connected and the graph adjacency

matrix A satisfies AL =1, A = AT, and diagonal entries A; > 0,Vi € {1,...,n},
where 1 is a vector of ones.
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Objective and proposed algorithms e § Decentralized communication

Decentralized communication algorithm

]‘ - Ai' . A,“ ..
Vig = > Hpj#’, VAMES / Hp“f (Mixing step)
it j=1 xeX j=1

F F
Pit+1 = exp (ati—p) v,-,t/(/ exp(at(;—p)v,;t(x)dx) (Likelihood update)
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Objective and proposed algorithms e § Decentralized communication and storage

Decentralized marginal objective

Decentralized communication with marginal state estimates (X; = {x;}jen;)

m Consensus: Ensuring that agents achieve the same estimate on common
domain &j; = &; N &

m Likelihood update: Including likelihood information at each time step

pi = arg min E E [—log(a;(zi ¢|Xi))] (Agent objective)
Pi | zj,e~a;(zi,e) X ~Pi

s.t. pi(Xj) = pi(X;), VjeN; (Marginal consensus constraint)
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Objective and proposed algorithms e § Decentralized communication and storage

Marginal consensus step

m p;(X;): Estimated density function by agent i on variables contained in X;
m p;+(Xj;): Marginal density of p;+(X;) computed over the common set of variables

at agent j
Geometric marginal mixing with stochastic weights

pi.¢(Xj) :/ pi.t(X;) (Common marginal)

X\ X

X;
pi ¢ (Xi| Xj) = Pie(i) (Conditional density)

i, (X5)
Bji.t(Xi) = pi e (Xi| Xy)pj.e (X)) (Include marginal information)
Vi t(Xi) o H ﬁﬁ”t (Mixing step)
JEN;
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Objective and proposed algorithms e § Decentralized communication and storage

Marginal consensus algorithm

pl t XI Aij ..
vi ¢ (X)) o H pj ¢(Xij) (Mixing step)

. oF
pi.t+1(Xj) = arg min {Oét <5P(Pi,r, Zit), P> 4 DKL(PHVi,t)}

PEFm

— izl ) vie / ( / q,-(z,-,tw)arv,-,t(x)dx>
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Objective and proposed algorithms e § Decentralized communication and storage

Gaussian marginal consensus algorithm

X2

Gaussian pdf ¢ <[X1}

M1 Q1 Qi -
pa| |21 Qo
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Objective and proposed algorithms e § Decentralized communication and storage

Gaussian marginal consensus algorithm

Common marginal Marginal density w.r.t. xi:
_ -1
¢>(X1‘u17 (Qu1 — Q129257 1) )
pi.t(Xj) = / » pi+(Xi) Conditional distribution
i\

Conditional density XXz = x2) ~ N (:“1 - Q1_11912("2 — [12), Q1_11)

pi.t (X)) Marginal distribution of Xa: N(fi2, Q55")
pi.t (X Xj) = r.o(X) () Joint distribution of (X1, X2)
Conditional marginal product: |:N1 + Q5 Qa2 — /72)] {911 B 12 }1
2 QL Qo +Q£Qﬁ1912

Biit (Xi) = pit(Xi| Xij) pj.e ()
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Gaussian marginal consensus
m Gaussians gb(x|u;,§271), Q=>4 A,

H¢ x|ui, Q < ‘Q 1ZAQN,, >

m Mixing step

LAjj
vie(Xj) o H pji,Jt(Xl)

JEN; m Likelihood qi(zi,t‘Xi) = ¢(Z,'7t‘H,'X,', V,),
m Likelihood update &z | HiXi, Vi) (Xis p, Q77 =
T AT
p,-7t+1(/1’,-) X q,-(Z,"t|X,')at V,'7t(X,') N ((Hi ViHi + Qi) (H,- ViZi,t + Qi,ui)

. (HViH; + Qi)il)
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Simulation

Simulation details

m A 10-node network with unknown locations x = [x;];en, Xi € R?.

m Observations: zj = (xj — x;) + €, ~ N (0, V;), Vi =,

m Agent observation model q;(zi|x) = ¢(z; — Hix, V;), Hi € {—1,0, 1}%IXilx2/4i]

m pi (X)) = o(Xi| i e, Ql_tl) Estimated normal density representing variables in X;

with mean p; + and covariance Qi_tl

Existing algorithms

m Belief propagation
m Full state updates

m Proposed algorithm
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Simulation

Self-state estimates

Belief propagation(BP), full state(FS) and marginal state estimates(MS) for a
10-agent ring network

15 Belief estimates Full state

15 15 Conditional estimates

(Row 1) Convergence to true

positions
15 . .
o (Row 2) Estimation error across
8 | s | s time
6 6 6
4 4 4
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Simulation

Effect of edge density
Estimation in multiple 10-node graphs with number of edges in {9,--- ,45}.

ES s
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Figure: Error in self position estimates via BP, full and partial state estimation algorithms.
(a) With increasing graph diameter after 500 steps. (b) With increasing connectivity captured
by Fiedler Eigenvalue.
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Simulation

Comparing the amount of communicated information

Transmitting a d-dimensional Gaussian density requires transmitting d + d? floating
point numbers.

Table: Comparing the iterations and communicated numbers for convergence to a fixed
error ¢ = 0.1 in a 25-node graph

Iterations Information units
BP FS CCS BP FS CS
Line NA 18 1356 NA 2203k 1301k

100 edges 9 2 28  29.8k 846.6k 291k
287 edges 7 2 15 blk 1856k 2709k
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Summary and future work

Summary

Introduced inference algorithm on partial set of variables with distributed
communication

Convergence for any connected graph
Developed Gaussian version of the marginal consensus algorithm

Studied simulations emphasizing trade-offs with Belief propagation and Full-state
algorithms
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Summary and future work

Future work

m Convergence analysis of marginal consensus algorithm

m Extending implementation to non-Gaussian densities and particle methods
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Summary and future work

Thank you
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Summary and future work

Gaussian full state updates

N (ie, Ql_tl) Normal density representing agent i's estimate over the space X

Qir= Z Qjt-1; it = Q:tl(z Q‘,tflﬂj,t—l)
JEN; JEN;
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Summary and future work

Belief propagation

m m; ;j(x;): Message from agent / to agent j

m p;+(x;): Agent i's estimate over the variable x;

mtu xl Zq zl_/|xlaxj)plt XI) H Me_1,kj xl)

keNj\i
pit—1(%i) [ Txen: mri(xi)
Zf:l Pj,tfl(xj) er/\/} mkj(xj)‘

pi,t(xi) =
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Summary and future work

Gaussian belief propagation

A Gaussian BP algorithm for agents with observation model
zi=H [x,- xj]—r + €€~ N(del,Qf), with H = [—1, 1] ® Iy, where ® is a kronecker
product. The update rule for each agent is given as

. _ 01
e =D et e = U | Y Uemhget |
iEN; iEN;

which depends on the messages sent to j from i € Nj:

Qjit — Qjie—1 O Toz
Qij,t = |: t 0 st 0:| +HI Qi H,',
v Qi t—1 ki t—
pie = Q5% <[Z"6{M\’} Ok S 1] + H;Tszu,t> :
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Summary and future work

Marginal averaging algorithm

We present the Gaussian estimate equivalent to the four algorithm steps in the
following lemmas. Here, we denote a Gaussian random variable A/(u, Q1) with
mean g and information matrix as €2, and its associated density function

as ¢(|'U’7 Q_l)'

Neighbor messages

—il
[Zl] , [gn gu} > with respect
2 21 22

The marginal density of the Gaussian pdf ¢ ({xl}

X2

to x; is given as,

¢(X1’M1, (Q11 — Q1292721921)_1)-
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Summary and future work

Gaussian marginal algorithm

Pre-edge merging

Let (X1, X2) be random vectors represented by a joint Gaussian distribution with
Q11 Q2
Qo1 Qo
conditional distribution is,(X1| X2 = x2) ~ N (,ul — Ql_llﬂlz(xz — p2), Ql_ll)

mean [Ml] and information matrix Q2 = [ ] The pdf associated with
2

Edge merging

Let Xi, X5 be random vectors with a joint Gaussian distribution. Assume that X
conditioned on X = xp is distributed as V(1 — Q7' Qu2(x2 — 112), Q') and that the
marginal distribution of Xy is NV (fiz, Qz_zl). Then, X1 and X joint distribution is

_ _ —1
N {Ml + QM Qo2 — Mz)] [911 B Q12 }
H2 12 Qo+ QL Qo ’
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Summary and future work

Gaussian marginal algorithm

Lemma (Geometric averaging)

Let Q, = > i, AiQ;. The weighted geometric product of Gaussian density
functions ¢(x|ui, Qi_l),Vi € {1,...,n} with corresponding weights A; is given as,

n

H o(x|pi, Qi_l)Ai =¢ (X‘le zn: AiQdiui, QW1> .
i=1

i=1
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Summary and future work

Gaussian marginal algorithm

Lemma (Likelihood update)

Let the likelihood density be described as q;(z; +|Xi) = ¢ (zi ¢|H;Xj, V;). Then the
posterior Gaussian density obtained as likelihood prior
product ¢ (z; ¢|HiX;, V1) & (i, Q1) is

1

N((H,-T\/,-H,-+Q,-)_1(H,-T\/,-z,-,t+9,-u,-), (H,T\/,-H,-+Q,-)‘1)
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Summary and future work

Self-state estimates

Belief propagation, full state and partial state estimates for a 10-agent ring network

15 Belief estimates 15 Full state

15 Conditional estimates

(Row 1) Convergence to true

B positions

e e B B (Row 2) Estimation error across
8 8 8

6 ] 6 ] s (.- time

4 i

4 H 4 H
2 2 2

0 [ 0 ==
0100200 300 400 500 600 700

0 100200 300 400 500 600 700 00 100 200 300 400 500 600 700
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Summary and future work

Self-state estimates

Belief propagation, full state and partial state estimates for a 10-agent ring network

Belief estimates Full state Conditional estimates

(Row 1) Convergence to true
positions

(Row 2) Logarithm of maximum
eigenvalue of the self-covariance
- P estimates

-15 -15
-15-10 -5 0 5 10 15 -15-10 -5 0 5 10

15

O o—————T———7—— /T

{1 -6 -6
0100 200 300 400 500 600 700 0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
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Summary and future work

Decentralized update

Consensus: Geometric mixing with stochastic weights

il = A L A ..
Vie=—>, |1 Pie Zit= H Pt (Mixing step)
Zi,t j=1 ’ xXeX j=1

Likelihood update: SMD algorithm

; oF
Pi,t+1 = arg p@}_[‘m {at <%(Pi,t7zi,t),P> + DKL(PHVi,t)}

 exp (at%> " / ( / exp(at%)v,-,t(x)dx>
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