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Introduction

Motivation: distributed estimation for autonomy

Estimation tasks with naturally distributed structure:

Key capabilities for distributed inference:

Rely on localized signals

Fast computation and low storage at nodes

Communication efficiency

Large scale networks with temporal variations
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Introduction

Example problem: Estimation in sensor network

Sensing agents N = {1, · · · , n}
with neighbor set Ni

Local communication network, (Weighted
adjacency matrix: A)

Unknown variable x ∈ Rm

Agent measurements models qi (zi |x)
zi : Measurements sampled from qi (zi |x⋆)

S1 S2

S3
S4

x⋆
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Introduction

Example problem: Estimation in sensor network

Sensing agents N = {1, · · · , n}
with neighbor set Ni

Local communication network, (Weighted
adjacency matrix: A)

Unknown variable x ∈ Rm

Agent measurements models qi (zi |x)
zi : Measurements sampled from qi (zi |x⋆)

S1 S2

S3
S4

x⋆

How to find the true value x⋆ of the unknown variable using measurements
received over the given communication network?

Parth Paritosh IEEE CDC 2022 Dec 9 2022 2 / 26



Introduction

Estimation problem

Samples: {zi}i∈N
Likelihood: qi (zi |x)
q⋆(z1:n,t) =

∏
i∈N qi (zi ,t |x∗): Sampled data generating density

q(z1:n,t |x) =
∏

i∈N q(zi ,t |x): Known observation likelihood for agent i

Find an online estimator

xt = f (z1:n,1, · · · , z1:n,t) such that xt → x⋆
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Introduction

Estimation problem

q⋆(z1:n,t) =
∏

i∈N qi (zi ,t |x∗): Sampled data generating density

q(z1:n,t |x) =
∏

i∈N q(zi ,t |x): Known observation likelihood for agent i

Estimation error: Hi (x⋆, x) = DKL(qi (·|x⋆)||qi (·|x)) ≡
∫
qi (·|x⋆) log qi (·|x⋆)

qi (·|x)

Optimal parameters

Agent-specific optimal set: X ⋆
i = argmin

x
Hi (x⋆, x)

Network optimal set: X ⋆ ≡ ∩i∈NX ⋆
i
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Introduction

Distributed estimation: Static and time-varying networks

Network G with nodes, edges {N , Et}:

Static Time-varying

E Et ∪t+B
k=t Ek E

[
∪t+B
k=t Ek

]
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Introduction

Distributed estimation: Directed networks
Network G with matrix model {At} :

Undirected Directed

Doubly Stochastic1 Column stochastic Row stochastic2

A1 = A⊤1 = 1 A⊤1 = 1 A1 = 1

1

2

3
4

1
2

3
4

1

2

3
4

1B. Gharesifard and J. Cortes. When does a digraph admit a doubly stochastic adjacency matrix? In Proceedings of American Control Conference,
pages 2440–2445, 2010.

2J. M. Hendrickx and J. N. Tsitsiklis. Fundamental limitations for anonymous distributed systems with broadcast communications. In Annu.
Allert. Conf. Commun. Control Comput., pages 9–16, 2015.
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Introduction

Context: Existing work

Nedic et al, 2017
Parasnis et al, 2021

Minka, 2005
Kar et al, 2012
Nedic et al, 2014

Atanasov et al, 2014

.

.

.

Uribe et al, 2022
Lalitha et al, 2018
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Distributed estimation in continuous spaces

Posing estimation problem as optimization

p̄(x): Unknown probability density function with
∫
p̄ = 1 over x ∈ Rm

Divergence based objective

KL-divergence objective function

argmin
p̄

{
E

x∼p̄
[DKL(q

⋆(z1:n,t)|| q(z1:n,t |x))]
}

≡ argmin
p̄

{
E

z1:n,t∼q(z1:n,t)
E

x∼p̄
[− log(q(z1:n,t |x))]

}
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Distributed estimation in continuous spaces • § Distributed estimation as optimization

Objective function is revealed online

Centralized objective

Time-averaged objective function

arg min
p̄∈F

{
1

T

T∑
t=1

F [p̄; z1:n,t ]

}
F [p̄; z1:n,t ] = E

x∼p̄
[− log(q(z1:n,t |x))]

Summable property of the objective function

Using independence between agent observations zi ,t ,

F [p̄; z1:n,t ] =
n∑

i=1

Fi [p̄i , zi ,t ] =
n∑

i=1

E
x∼p̄i

[− log(qi (zi ,t |x))]
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Distributed estimation in continuous spaces • § Distributed estimation as optimization

Mirror descent yields Bayesian updates

pt : Estimated probability density function at time t
δF
δp [pt , z1:n,t ]: Gradient of centralized objective function

The sequence {αt} is square-summable but non-summable.

Stochastic mirror descent

pt+1 = arg min
p∈L1

{〈
δF

δp
[pt , z1:n,t ], p

〉
+

1

αt
DKL(p||pt)

}
=⇒ pt+1(x) ∝ q(z1:n,t |x)αtpt(x)
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Distributed estimation in continuous spaces • § Distributed estimation as optimization

Distributed optimization requires consensus

Consensus: Ensuring that agents achieve the same estimate

Likelihood update: Including likelihood information at each time step

pi (x) = argmin
p̄i

[
E

zi,t∼q⋆i (zi,t)
E

x∼p̄i
[− log(qi (zi ,t |x))]

]
(Agent objective)

subject to pi (x) = pj(x), ∀j ∈ Ni (Consensus constraint)

(Assumption) The communication network is connected over B-time steps and
the graph adjacency matrix At satisfies At1 = 1, and diagonal entries
At,ii > 0 ,∀i ∈ {1, . . . , n}, where 1 is a vector of ones.
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Distributed estimation in continuous spaces • § Distributed estimation as optimization

Proposed distributed communication algorithm

Modified Stochastic mirror descent

pi ,t+1 = argmin
p∈F


〈
δF

δp
[pi ,t , zi ,t ], p

〉
+

1

α

n∑
j=1

At,ij DKL(p||pj ,t)


Proposed algorithm

vi ,t(x) =
1

Z v
i ,t

n∏
j=1

pj ,t(x)At,ij , Z v
i ,t =

∫
x∈Rm

 n∏
j=1

pj ,t(x)At,ij

 (Mixing step)

pi ,t+1(x) = qi (zi ,t |x)αvi ,t(x)
/(∫

qi (zi ,t |x)vi ,t(x)dx
)

(Likelihood update)
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Distributed estimation in continuous spaces • § Analysis

Proof elements

Define log-probability and log-likelihood terms,

ri ,t(x) = log
[

pi,t(x)
pi,t(x⋆)

]
, gi ,t(x) = log

[
qi (zi,t |x)
qi (zi,t |x⋆)

]
rt+1(x) = At . . .A0r0(x) + α

t∑
k=1

At . . .Akgk(x).

Network assumption

Row stochastic weights: At1 = 1, [At ]ii > 0,
B-connectivity: (N ,∪t+B

k=t Ek) is connected ∀t > 0.

B-connectivity =⇒ |[At . . .Ak ]ij − ϕk,j | ≤ λk , where λ ∈ (0, 1) and ϕk,j > δ > 0
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Distributed estimation in continuous spaces • § Analysis

Log-likelihoods can be unbounded

Agent observation models: πi (zi |µi , 1) = exp(−0.5(zi − µi )
2)

Log- likelihood ratio g12(zi ) = log (π1(zi )/π2(zi )) = 2zi (µ1 − µ2) + (µ22 − µ21)

Definition: Moment generating functions (mgf)

For a random variable X with density pX , mgf ψ(b) = E[exp(bX )] for any b ∈ R.

Log likelihoods have a bounded mgf: E [exp (bg12(zi ))] <∞
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Distributed estimation in continuous spaces • § Analysis

Assumptions

Networks

Row stochastic weights: At1 = 1, [At ]ii > 0,
B-connectivity: (N ,∪t+B

k=t Ek) is connected ∀t > 0.

Finite mgf

The mgf of log-likelihood ratios gi ,t(x) is finite.

Other assumptions

Positive priors Agents’ prior pdfs pi ,0(x
⋆) > 0 at optimal values x⋆ ∈ x⋆.

Independent observations Independence across time and agents: zi ,t ∼ qi (·|x⋆).
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Distributed estimation in continuous spaces • § Analysis

Pointwise convergence rate is exponential

Theorem

Let uniform connectedness, independent observations, positive priors, and finite mgf
assumptions hold. For each x /∈ X⋆, x⋆ ∈ X⋆, there is a t0 ∈ N s.t. ∀ t ≥ t0, estimated
pdf pi ,t satisfies,

P
(

pi ,t(x)
pi ,t(x⋆)

< exp(ā(x , x⋆)t)
)

≥ 1− exp(−tJt0(ā(x , x⋆))).

The exponential rate of convergence ā(x , x⋆) = −cδ|H(x , x⋆)|1 < 0 is defined via the
bound δ ∈ (0, 1) and KL-divergence sum |H(x , x⋆)|1 =

∑
j∈N DKL(qi (·|x⋆)∥ qi (·|x)).

Any choice of c ∈ (0, 1) ensures Jt0(ā(x , x⋆)) is positive.
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Distributed estimation in continuous spaces • § Analysis

Pointwise convergence rate is exponential
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Distributed estimation in continuous spaces • § Analysis

Mode of the estimated pdf is optimal

Theorem: Mode of probability densities

As t → ∞, a mode of the pdf pi ,t(x) estimated by agent i almost surely lies in the set
of optimal parameters x⋆.

Corollary: Discrete probabilities

If the estimated probability density pi ,t is bounded above by some γ > 0 as is the case
for probability mass functions, then the probability estimated at any x1 ∈ x\x⋆ satisfy,
pi ,t(x1) → 0 a.s.
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Distributed estimation in continuous spaces • § Simulation

Cooperative localization

A 10-node network with unknown locations x = [xi ]i∈N , xi ∈ R2.

Observations: zij = (xj − xi ) + ϵ, ϵ ∼ N(0,Vi ),Vi = I2
Agent observation model qi (zi |x) = ϕ(zi − Hix ,Vi ), Hi ∈ {−1, 0, 1}dz |xi |×2|xi |

pi ,t(x) = ϕ(x |µi ,t ,Ω−1
i ,t ): Estimated normal density representing variables in x

with mean µi ,t and covariance Ω−1
i ,t

Mean and covariance updates:

Ωi ,t+1 =
∑
j∈N

At,ijΩj ,t−1 + αH⊤
i Ωz

i Hi ,

µi ,t+1 = Ω−1
i ,t+1(

∑
j∈N

At,ijΩj ,t−1µj ,t−1 + αH⊤
i Ωz

i zi ,t).
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Distributed estimation in continuous spaces • § Simulation

Cooperative localization

Figure: (left) Observation network and (center, right)
time-varying communication network at times t ∈ {1, 2}. Figure: A ten-agent time varying

network estimates relative positions of
agent 2. The horizontal dashed and
dotted lines represent true (x2, y2)
positions.
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Distributed estimation in continuous spaces • § Simulation

Estimating motion model

Target position yd
t = x⋆ + r [cos(θt), sin(θt)]

⊤, θt = θt−1 + ω∆t

Sensor i at y s
i measures zi ,t(y s

i , y
d
t ) = |y s

i − yd
t |2 + η, η ∼ N(0, 1)

Prior pi ,0(x⋆) =
∑M

m=1 α
m
i ,0δ(x⋆|xm

i ,0)

pi ,t+1|t(x⋆) ∝ qi (zi ,t |x⋆)
M∑

m=1

αm
i ,tδ(x⋆|xm

i ,t)

αm
i ,t+1 =

(
qi (zi ,t |xm

i ,t)α
m
i ,t

/
M∑

m=1

qi (zi ,t |xm
i ,t)α

m
i ,t

)

Distributed resampling weights: Aijα
m
j ,t

Figure: Trajectory and sensor particles.
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Distributed estimation in continuous spaces • § Simulation

Estimating motion model

Figure: Estimating the center of a circular trajectory (orange
triangle at [1, 4]) using a time-varying uniformly connected network
of four sensors (red squares at [1, 1], [1, 2], [2, 4], [2, 3]). The
subfigures show the cooperatively estimated particle-filter
distribution of the circle center after 1 (left) and 200 (right)
iterations.

Figure: Evolution of the mean and
log-maximum eigenvalue of the covariance
of the particle-filter estimates.
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Distributed estimation in continuous spaces • § Simulation

Contributions

Proposed distributed estimation algorithm for uniformly connected directed graphs

Proved probability on non-optimal domain decays exponentially, even for
continuous likelihood models

Demonstrated that the mode of estimated pdf converges to true value using
Borel-Cantelli arguments

Presented the Gaussian and a modified particle version of the algorithm
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Distributed estimation in continuous spaces • § Simulation
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Distributed estimation in continuous spaces • § Simulation

Proof elements

Define log-probability and log-likelihood terms,

ri ,t(x) = log
[

pi,t(x)
pi,t(x⋆)

]
, gi ,t(x) = log

[
qi (zi,t |x)
qi (zi,t |x⋆)

]
rt+1(x) = At . . .A0r0(x) + α

t∑
k=1

At . . .Akgk(x).

Network assumption

Row stochastic weights: At1 = 1, [At ]ii > 0,
B-connectivity: (N ,∪t+B

k=t Ek) is connected ∀t > 0.

Matrix product: |[At . . .Ak ]ij − ϕk,j | ≤ λk , where λ ∈ (0, 1) and ϕk,j > δ > 0
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Distributed estimation in continuous spaces • § Simulation

Log-likelihoods can be unbounded

Agent observation models: πi (zi |µi , 1) = exp(−0.5(zi − µi )
2)

Log- likelihood ratio g12(zi ) = log (π1(zi )/π2(zi )) = 2zi (µ1 − µ2) + (µ22 − µ21)

Definition: Moment generating functions (mgf)

For a random variable X with density pX , mgf ψ(b) = E[exp(bX )] for any b ∈ R.

Log likelihoods have a bounded mgf: E [exp (bg12(zi ))] <∞
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Distributed estimation in continuous spaces • § Simulation

Assumptions

Networks

Row stochastic weights: At1 = 1, [At ]ii > 0,
B-connectivity: (N ,∪t+B

k=t Ek) is connected ∀t > 0.

Finite mgf

The mgf of log-likelihood ratios gi ,t(x) is finite.

Other assumptions

Positive priors Agents’ prior pdfs pi ,0(x
⋆) > 0 at optimal values x⋆ ∈ x⋆.

Independent observations Independence across time and agents: zi ,t ∼ qi (·|x⋆).
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Distributed estimation in continuous spaces • § Simulation

Large deviations from the mean is improbable

Cramer’s theorem

Assume that the mgf ψ(b) of a random variable Xt is finite for some b > 0 and let
µ = E[Xt ]. Then, for any a > µ and a running sum St =

∑t
k=1 Xt ,

P(St > at) ≤ exp(−tI (a)),

where I (a) = supb>0{ab − log(ψ(b))} > 0.

Relating to convergence rates in Cramer’s theorem:
e0 = [At . . .A0r0]i , ek = α[At . . .Akgk ]i , ψk(b) = E[exp(bek)]

Jt(a) = sup
b>0

(
Dt(a, b) ≡ ab − 1

t

t∑
k=0

log(ψk(b))

)

Parth Paritosh IEEE CDC 2022 Dec 9 2022 26 / 26


	Introduction
	Distributed estimation in continuous spaces
	Distributed estimation as optimization
	Analysis
	Simulation


