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Introduction

Motivation: Distributed Estimation for Autonomy

Estimation tasks with naturally distributed structure:

Key capabilities for inference algorithms:

m Online localized signals data
m Fast computation and low storage at nodes
m Interconnected heterogeneous systems

m Large networks with temporal variations
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Example Problem: Estimation in Sensor Network

m Sensing agents N = {1,--- , n} “”ﬁ“
with neighbor set N; ﬁg, -7 -

m Local communication network, ’ . /
(Weighted adjacency matrix: A) g \ /
m Unknown variable § € R™ . N

m Agent measurements models ¢;(z|6) ﬁl ______ o ’ﬁz
m Measurements z; € RY from ¢;(z;|6*) 0* @
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Introduction

Example Problem: Estimation in Sensor Network

Sensing agents N = {1,--- , n} “”j“
with neighbor set N; ﬁg, -7 -

m Local communication network,
(Weighted adjacency matrix: A) g \ /
Unknown variable § € R™ ‘ N

Agent measurements models ¢;(z;|6) ﬁl ______ o ’ﬁz
m Measurements z; € RY from ¢;(z;|6*) 0* @

m How to find the true value 6* of the unknown variable using measurements
received over the given communication network?
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Introduction

Estimation problem

m Samples: z;;

m Likelihood: ¢(z; +|0)

m *(z1:0,t) = []jenr 4i(2i,t|07): Data generating density

m ((z1:0,t|0) = [;en £(2i,t|60): Known likelihood functions

Find an estimator

0[- = f(Z]_;n,]_, s ,Z]_;n’t) such that 6’t — 0*
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Introduction

Estimation problem (continued)

m *(zint) = [jepn li(2it]07): Data generating density
® ((z1:0,t10) = [Tienr €(2i,t]0): Known likelihood functions

Agent estimation error

Hi(6*,6) = Diw (416711 5(18)) = [ (-16%) log 44127

Optimal parameters

Agent-specific optimal set: X7 = argmin H;(6*,0)
0

Network optimal set: X* = Njen X
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Introduction

Distributed Estimation: Static and Time-Varying Networks

Network G with nodes, edges {\/, & }:

Static Time-varying
£ & uttBe, E |UtBe,
4 4 ; 4 - 4

|

N N

Parth Paritosh Cooperative estimation: Communication and Space Dec 5 2023 5/ 68



Introduction

Distributed Estimation: Directed Networks
Network G with matrix model {A;} :

Undirected Directed
Doubly Stochastic! | Column stochastic Row stochastic?
Al=AT1=1 ATl =1 Al =1

g 3 ——4 3 —— 4
1 1&/ 1&/
N N N

2 2

2

B. Gharesifard and J. Cortes. When does a digraph admit a doubly stochastic adjacency matrix? In Proceedings of American Control Conference,
pages 2440-2445, 2010.

2. M. Hendrickx and J. N. Tsitsiklis. Fundamental limitations for anonymous distributed systems with broadcast communications. In Annu.
Allert. Conf. Commun. Control Comput., pages 9-16, 2015.
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Introduction

Literature survey: Distributed Estimation

How to combine private observations and neighbor opinions?

Distributed optimization

m Bayesian m In networks
Anderson and Moore, 2005 Shahrampour and Jadbabaie, 2016
Bandopadhyay and Chung, 2018 Pu et al., 2020

= Non-Bayesian Safadatniaki et al., 2020
Jadbabaie et al., (2012, 2018) U2 £ ell., 2022

Nedic et al., (2015, 2017)

Mitra et al., 2020 Mlxmg
. m General Minka, 2005; Cortes, 2008
Network architecture

. m Arithmetic Jadbabaie et al., 2012, Parasnis et
m Static Olfati-Saber et al., 2006; Moreau, 2008

Ti ing Kia et al., 2016, Nedic et al b 2P
| Ime-varyin t al., , t al., g .
2015 ying Kia et a ediceta m Geometric Magnesius et al., 2016
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Introduction

Context: Existing Work and Contributions

Nedic et al., 2017 3
Parasnis et al., 2021

Minka, 2005

Kar et al.,, 2012
" ] Lalitha et al., 2018
Nedic et al., 2014 Uribe et al., 2022

Atanasov et al., 2014 4

3p. Paritosh, Atanasov N, Martinez S. Distributed Bayesian Estimation of Continuous Variables Over Time-Varying Directed Networks. |IEEE
Control Systems Letters. 2022 Apr 14;6:2545-50. Joint submission with IEEE CDC 2023.

4p, Paritosh, N. Atanasov, and S. Martinez, "Distributed Bayesian Estimation in Sensor Networks: Consensus on Marginal Densities”, In peer
review at |EEE Transactions on Network Science and Engineering.
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Introduction

Context: Existing work and Contributions

Belief propagation

Bickson, 2008
Du et al.,, 2017

Yedidia et al., 2005 Ortiz et al., 2021

5p. Paritosh, N. Atanasov, and S. Martinez, , “Hypothesis assignment and partial likelihood averaging for cooperative estimation”, In IEEE
Conference on Decision and Control, 2019, pp. 7850-7856.

6p, Paritosh, N. Atanasov, and S. Martinez, “Marginal density averaging for distributed node localization from local edge measurements”, In IEEE
Conference on Decision and Control, 2020, pp. 2404-2410.

7P. Paritosh, N. Atanasov, and S. Martinez, “Distributed Bayesian Estimation in Sensor Networks: Consensus on Marginal Densities”, In peer
review at IEEE Transactions on Network Science and Engineering.
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Introduction

Context: Existing work and Contributions

Kairouz et al., 2021
Cadena et al., 2021
Uribe et al., 2022

Braun and McAuliffe, 2008 Hoffman et al., 2013
Han et al.,, 2020 Barfoot et al., 2020

8p. Paritosh, N. Atanasov, and S. Martinez, , “Distributed Variational Inference for Online Supervised Learning”, In peer review at IEEE
Transactions on Signal Processing
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Estimation in Continuous Spaces

Outline

Nedic et al., 2017
Parasnis et al., 2021

Introduction
Estimation in Continuous Spaces
Distributed Density Estimation

Minka, 2005
Distributed Variational Inference Nedie ceui 2S0ta Lalitha et al., 2018
Distributed Marginal Estimation Atanasov et al., 2014 Potesh &al 3%

@ Future Directions
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Estimation in Continuous Spaces

Research Question and Motivation

Research Question

How to estimate the unknown density p(0) with [ 5 =1 over § € R based on data
71.n,<t Collected by the network?

Parth Paritosh Cooperative estimation: Communication and Space



Estimation in Continuous Spaces

Posing Estimation Problem as Optimization

Divergence based objective

m KL-divergence objective function
argmin { 2 1D (€"(zune )| a0 |

—agmn{ E B [oglendo)])

P Zl:n,tNe*(zl:n,t) 0~p
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Estimation in Continuous Spaces e § Distributed Estimation as Optimization

Objective function is revealed online

Centralized objective

m Time-averaged objective function

-
1
5 f = — 2 _ F =~ i
arglr_Jneljn__ [P] arglr_Jrg]n__{_,_tE:1 [P,Zl.n,t]}

F[[:_), zl:n,t] = OIEIE[_ |0g(f(21:n,t|9))]

Summable property of the objective function

Using independence between agent observations z; ¢,

n

FIp: znel = Y Filbir zid] = ZGINE&[— log(¢;(zi,|0))]
P : ;

i=1
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Estimation in Continuous Spaces e § Distributed Estimation as Optimization

Mirror Descent Yields Bayesian Updates

m p;: Estimated probability density function at time t
[ ‘;—’;[pt,zl;,,,t]: Gradient of centralized objective function

m The sequence {a;} is square-summable but non-summable.

Stochastic mirror descent

Pt+1 = mi o0 [Pt; zi:ne] P e (pllpe)
arg min , Zint), P )+ —D
t+1 gpe ] t> Z1:n,t . KL t

— pesr(0) o L(z1ne]0)pe(0)
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Estimation in Continuous Spaces e § Convergence guarantees

Theorem: Convergence Guarantees

m Bounded likelihoods (lower) m Independent Observations m Positive priors
Functional convergence o )
For square summable o, the PDF = p*(6) ©
sequence {p;} converges almost surely to, s

0.000

20 -5 -lo 5 © 5 W 15 2w

B(P,E) = {P € «Fdl min DKL[P*,P] < 6}7
prer= 0z

DKL[p*7 p]

02

an e-divergence neighborhood of the .

minimizers F* for any € > 0.

00

T T T T T T T T T
-0 -15 -10 -5 0 5 10 15 20
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Estimation in Continuous Spaces e § Convergence guarantees

Theorem: Convergence Guarantees

m Bounded likelihoods (lower) m Independent Observations m Positive priors

Functional convergence
Convergence rate

For square summable a;, the PDF _ . )
sequence {p;} converges almost surely to, For t_he Step sizes ai <1(f[ptt] —flp ])/2L '
the time average p; = ; > ,_; Pk satisfies,

B(F*,¢) = {p & Fg| min Dia[p",p] <}, Fl5] — FIp] < O(1/V/2),

an e-divergence neighborhood of the
minimizers F* for any € > 0.

Parth Paritosh Cooperative estimation: Communication and Space
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Distributed Density Estimation

Outline

Distributed Density Estimation Phratnis et . 3021

m Proposed algorithm and convergence guarantees
m Cooperative localization and parameter estimation

Minka, 2005
Kar et al., 2012
Nedic et al., 2014 Lalitha et al., 2018
Atanasov et al., 2014 Uribe et al., 2022
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Distributed Density Estimation

Research Question and Motivation

Research Question

How to estimate the unknown probability density p;(#) over § € R™ at each
agent i € N based on private data z; <; and neighbor inferences?

Parth Paritosh Cooperative estimation: Communication and Space



Distributed Density Estimation

Distributed Optimization Requires Consensus

m Consensus: Ensuring that agents achieve the same estimate

m Likelihood update: Including likelihood information at each time step

pi(0) = arg min E E [—log(4i(zi¢]0))] (Agent objective)
Pi |z, el (2j,¢)0~pi
pi(0) = pi(0), VjeEN; (Consensus constraint)

m Static connectivity: The graph adjacency matrix A satisfies Al = AT1 =1, and
diagonal entries A; ;i > 0,Vi € {1,...,n}.

Parth Paritosh Cooperative estimation: Communication Dec 5 2023 20 / 68



Distributed Density Estimation e § Proposed algorithm and convergence guarantees

Proposed Distributed Estimation Algorithm

Modified Stochastic mirror descent Agent 2

Pt

Agent 1 samples {z.} PLe
Likelihood £1(zy,¢6)

Pre

_ SF 1 &
Pit+1 = arg gé'; <$[Pi,tvzi,t]ap> + a—t ;Au DKL(PHPj,t)

Agent 3
Proposed algorithm
1 . v - . .
vi,e(0) = Zv HPj,t(e)A”7 VARES / Hpj,t(9)A” (Mixing step)
it j=1 ocRm j=1

pi.t+1(0) = é;(z;7t|0)°‘fv;7t(0)/</ E,-(z,-,t|9)a‘v,-,t(0)d0> (Likelihood update)

Parth Paritosh Cooperative estimation: Communication and Space



Distributed Density Estimation e § Proposed algorithm and convergence guarantees

Theorem: Weak Convergence Guarantees

m Static connectivity m Independent observations

m Positive priors m Bounded likelihoods

Parth Paritosh Cooperative estimation: Communication and Space



Distributed Density Estimation e § Proposed algorithm and convergence guarantees

Theorem: Weak Convergence Guarantees

m Static connectivity m Independent observations

m Positive priors m Bounded likelihoods

Functional convergence

Then the estimated PDF sequence {p; ;} converges almost surely to e-divergence
neighborhood B(F*,€) around optimal PDF set F* for any ¢ > 0.

m Divergence neighborhood: B(F*,€) = {p € Fq| minp+cr+ DiL[p*, p] < €}.

Parth Paritosh Cooperative estimation: Communication and Space



Distributed Density Estimation e § Proposed algorithm and convergence guarantees

Relaxing Connectivity and Likelihood Bounds

Row stochastic weights: A:1 =1, [A¢]ii > 0,
B-connectivity: (N, Ufj:fé'k) is connected Vt > 0.

Finite moment generating functions (MGF)
The MGF of log-likelihood ratios g; +(x) is finite.

Step sizes
Fixed step sizes oy = o > 0.

Parth Paritosh Cooperative estimation: Communication and Space



Distributed Density Estimation e § Proposed algorithm and convergence guarantees

Log-Likelihoods can be Unbounded

| m(zi
m Agent observation models:

mi(zi|wis 1) = exp(—0.5(z; — 1))
m Log-likelihood ratio

812(2;) = log (ﬂl(zi)> = 22i(p1 — p2) + (13 — 113)

ma(z;)

7T2(Z,‘)

Definition: Moment generating functions (MGF)
For a random variable X with density px, MGF v (b) = E[exp(bX)] for any b € R.

m Log likelihoods have a bounded MGF: E [exp (bgi2(zi))] < oo

Parth Paritosh Cooperative estimation: Communication and Space



Proposed Distributed Estimation Algorithm

_ 5F 1 —
pic+1 = argmin <%[pi,t,z,~,t],p> += ;Ar,u Dki(pl|pj,c)

Proposed algorithm

n
vie( H pie(0)i,  ZV, = /0 . H pj.e(0)"i (Mixing step)
erm \
j=1

It_/ 1

pit+1(6) = E,-(z,-,t|0)av,-7t(6)/</ E,-(z,-’t|9)v,-,t(9)d9) (Likelihood update)
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Distributed Density Estimation e § Proposed algorithm and convergence guarantees

Theorem: Pointwise Convergence Rate is Exponential

m Uniform connectivity m Independent observations

m Positive priors m Finite moment generating functions on likelihood

Parth Paritosh Cooperative estimation: Communication and Space



Distributed Density Estimation e § Proposed algorithm and convergence guarantees

Theorem: Pointwise Convergence Rate is Exponential

m Independent observations

m Uniform connectivity
m Finite moment generating functions on likelihood

m Positive priors

Claims
Then, for each 0 ¢ X,, 0, € X,, there exists a time ty € N such that V¢ > to,

the estimated PDF p; ; satisfies,

Pi,t(‘g) _ _
E (pt—(g) < e><p(a(9,9*)t)> > 1 — exp(—tJy, (3(6, 6,))).

Cooperative estimation: Communication and Space

Parth Paritosh



Distributed Density Estimation e § Proposed algorithm and convergence guarantees

Theorem: Pointwise Convergence Rate is Exponential

m Independent observations

m Uniform connectivity
m Finite moment generating functions on likelihood

m Positive priors

Claims
Then, for each 0 ¢ X,, 0, € X,, there exists a time ty € N such that V¢ > to,

the estimated PDF p; ; satisfies,
i (0
P (L00 < exp(a(0.0.)0)) > 1 exp(-t a(6,6.).

pi,t(e*)
m Exponential convergence rate a(0,6,) = —cd||H(0,0,)|l1 <O

m [[H(0,6:)ll1 = 2 jen Dri(€i(:165)] £i(-16))
m Any c € (0,1) ensures Jy,(a(6,64)) > 0.

Cooperative estimation: Communication and Space
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Distributed Density Estimation e § Proposed algorithm and convergence guarantees

Pointwise Convergence Rate is Exponential

Parth Paritosh Cooperative estimation: Communication and Space



Distributed Density Estimation e § Proposed algorithm and convergence guarantees

Mode of the Estimated PDF is Optimal

Theorem: Mode of probability densities

As t — 00, a mode of the PDF p; () estimated by agent i almost surely lies in the
set of optimal parameters 6,.

Corollary: Discrete probabilities

If the estimated probability density p; ; is bounded above by some v > 0 as is the case
for probability mass functions, then the probability estimated at any 6; € 6\, satisfy,
pit(61) = 0 as.

Parth Paritosh Cooperative estimation: Communication and Space



Distributed Density Estimation e § Cooperative localization and parameter estimation

Example 1: Cooperative Localization

m A 10-node network with unknown locations 6 = [0;]icnr, 0; € R?.

m Observations: zjj = (6; —0i) + €, ~ N(0, V;), Vi =1

m Agent observation model 4;(z;|0) = ¢(z; — H;0, Vi), Hi € {—1,0,1}%I0ix2[6i

m pi+(0) = o(0|pir, Q;tl) Estimated normal density representing variables in § with

mean 1 ; and covariance Qi_tl
b

Parth Paritosh Cooperative estimation: Communication and Space Dec 5 2023 29 / 68



Distributed Density Estimation e § Cooperative localization and parameter estimation

Example 1: Cooperative Localization

025

000

025

by -0.50

Observation network and time-varying communication o7
network at times t € {1,2}.

Estimated agent 2 cc

] 0 100 150 20 20 300
Time steps

Estimated positions of agent 2.

Parth Paritosh
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Distributed Density Estimation e § Cooperative localization and parameter estimation

Example 2: Target Tracking

= Target position ¢ = 0, + rlcos(B:), sin(B:)] T, B = fr1 +wit
m Sensor i at y® measures z ((y?,y?) = |y? — y&|» +n,n ~ N(0,1)

m Prior pio(6x) = S, a00(64107)

M 3 Trajectory
Pi,t+1\t(0*) X E,-(z;?t|9*) Z Oéff't5(9*l9ﬂ)
m=1
M
o1 = | (2|07 )ar Z Ci(zie|07 )y
m=1

Trajectory and sensor particles.
m Distributed resampling weights: A,Jozﬂ

Parth Paritosh Cooperative estimation: Communication and Space Dec 5 2023 31/68



Distributed Density Estimation e § Cooperative localization and parameter estimation

Example 2: Target Tracking

3 Trajectory ) Trajectory

Cooperatively estimated particle-filter distribution of the target's
center after 1 and 200 iterations. Estimating the trajectory center - {
(orange triangle) using a uniformly connected network of four -
sensors (red squares).

o 50 100 150 200 250 300 350 400
Evolution of the mean and log-maximum
eigenvalue of the covariance of the

particle-filter estimates.
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Distributed Density Estimation e § Cooperative localization and parameter estimation

Contributions

m Proposed distributed estimation algorithm for uniformly connected directed graphs
m Weak and pointwise convergence results for distributed estimation of continuous
probability densities

m Presented the Gaussian and a modified particle version of the algorithm

Publications:

m P. Paritosh, N. Atanasov, and S. Martinez, “Distributed Bayesian Estimation of
Continuous Variables Over Time-Varying Directed Networks”, in IEEE Control Systems
Letters, vol. 6, pp. 2545-2550, 2022. (Joint submission with IEEE CDC)

m P. Paritosh, N. Atanasov, and S. Martinez, “Distributed Bayesian Estimation in Sensor
Networks: Consensus on Marginal Densities”, Under review at IEEE Transactions on
Network Science and Engineering.
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Distributed Variational Inference

Outline

Distributed Variational Inference b il 20
. . adena et al.,
] D!str!buted ELBO_ o Uribe et al., 2022
m Distributed Gaussian Variational Inference
m Distributed Mapping: Simulation and Implementation
SEumn e Hoffman et al., 2013

McAuliffe, 2008
Han et al., 2000 Barfoot et al., 2020
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Distributed Variational Inference

Problem Setup: Real-Time Bayesian Inference

Agent 2 samples {z;}
pz.y Likelihood £(z3,¢[0) o m Non-linear heterogeneous likelihoods

m Distributed communication

Agent 1 samples {z1,c} © p; , e

Likelihood £1(z1.¢[ Pa.e . e
ikelihood £(21¢/6) ‘\f’“ m Online probabilistic inference

pre © Agent 3 samples {z3;}
Likelihood £3(z3,¢|0)

Goal: Design a distributed real-time approximate inference algorithm for learning
probability density function p(6) over unknown 6.

Parth Paritosh Cooperative estimation: Communication and Space Dec 5 2023 35/ 68



Distributed Variational Inference

Variational Inference

Likelihood Prior
£(z:]0) p(0]z<+)
p(zt|z<t)

Normalization factor

m Computing normalization factor is intractable (unless conditionally conjugate)

m Bayes' rule: Posterior on 0 satisfies p(6|z<;) =

Parth Paritosh Cooperative estimation: Communication and Space Dec 5 2023 36 / 68



Distributed Variational Inference

Variational Inference

Likelihood Prior

N e N
p(z¢|z<+)

Normalization factor

m Bayes' rule: Posterior on 0 satisfies p(6|z<;) =

Approximate posterior via a variational family of distributions g(6) € F

Maximize Evidence Lower Bound (ELBO) on the normalization factor,
p(zt|z<t) = qI(l%)[log {(z¢|0) — log(q(0)) + log p(0]z<¢)]-

m In recursive settings, replace prior p(0|z<;) with g:—1(6)

Parth Paritosh Cooperative estimation: Communication and Space Dec 5 2023 36 / 68



Distributed Variational Inference e § Distributed ELBO

Theorem: Distributed Evidence Lower Bound (DELBO)

m Independent Observations,
Assuming: m Connected network,

m Agent PDFs g; +(6) = q:(6) for some PDF q.(6),

Parth Paritosh Cooperative estimation: Communication and Space Dec 5 2023 37 /68



Distributed Variational Inference e § Distributed ELBO

Theorem: Distributed Evidence Lower Bound (DELBO)

m Independent Observations,

Assuming: m Connected network,

m Agent PDFs g; +(6) = q:(6) for some PDF q.(6),

the separable distributed evidence lower bound (DELBO) on the normalization factor is,

p(zt|z<t)>z » [e (z,t]9)—flog(q,t 0))+ > Ulogpj(9|z<t)]

ien It JEN

where A is the adjacency matrix representing connected networks.

Parth Paritosh Cooperative estimation: Communica Dec 5 2023 37 /68



Distributed Variational Inference e § Distributed ELBO

Optimizing DELBO

m Replace prior p;(f|z+) with its approximation g; +—1(6)
m Separable objective Ji[q1t,. .., qnt] = D icnr JielGi el

Ajj 1
Jitlgicl = E [log[li(zi¢|0) | | qj,tfl(Q)TJ] —log gi +(0)~].
q,-,t(G) jGN

Parth Paritosh Cooperative estimation: Communication and Space Dec 5 2023 38 /68



Distributed Variational Inference e § Distributed ELBO

Optimizing DELBO

m Replace prior p;(f|z+) with its approximation g; +—1(6)
m Separable objective Ji[q1t,. .., qnt] = D icnr JielGi el

Ajj 1
Jitlgicl = E [log[li(zi¢|0) | | qj,tfl(Q)TJ] —log gi +(0)~].
q,-,t(G) jGN

m Optimal PDF for agent i is g;,+(0)  £i(z; +|0)q? (0) € arg max J; +[p]
P

AL
m Mixed PDF qf (0) o [[jcn: 9j,c-1(0) ™ with likelihood exponent o = n.

Parth Paritosh Cooperative estimation: Communication and Space Dec 5 2023 38 /68



Distributed Variational Inference e § Distributed ELBO

Computing Variational Densities

At agent i € NV,

Gi.e(0) = i(z1.¢0)q® //e z,t|9 (6)d8

How to handle non-conjugate likelihoods?
Approximate Gaussian variational densities with arbitrary differentiable likelihoods

Parth Paritosh Cooperative estimation: Communication and Space Dec 5 2023 39 /68



Distributed Variational Inference e § Distributed Gaussian Variational Inference

Lemma: Distributed Gaussian variational inference (DGVI)
At agent i and time t, given:

m observation z; ; with likelihood £(z; +|6),

m neighbor estimates qj +—1(6) = N(8|j,¢—1, Qj_tl_l),

m Neighbor weights in communication matrix A,

the mean p; ¢ and information matrix €; ; of the PDF g; ; minimizing DELBO is,

QF, = A1, 5,08, = A e
JEN JEN
Q,"t = ng,t — Eqﬁt [V§ Iog f(Z,'J‘H)],

pie = 1, + (6,) B [V log £(21,/6)].

Parth Paritosh Cooperative estimation: Communica Dec 5 2023 40 / 68



Distributed Variational Inference o § Distributed Gaussian Variational Inference

Adapting DGVI to Supervised Learning

Problem: Approximate E [V log £(z; +]0)] for real-time computation:
qit
— Computating expectation by sampling qigt is computationally prohibitive

— Define kernel based classification/regression model as agent likelihoods

— Compute expectation w.r.t. the mixed Gaussian PDF ¢¥, = ¢(0|ué ., (Q2%,)71)

Parth Paritosh Cooperative estimation: Communication and Space Dec 5 2023 41 / 68



Distributed Variational Inference o § Distributed Gaussian Variational Inference

Classification Model

m Observed data z = (x, y) with input x € RY and label y € {0,1}

m Model features ®, € R/*1 with kernel elements:
by = [17 kl(X)7 s k/(X)], kS(X) = eXp(_7||X - X(s)Hz)
m Agent likelihood model with parameters 6 and sigmoid function o:

£(216) = o(®10Y (1 - (0] 0))~

Parth Paritosh Cooperative estimation: Communication and Space Dec 5 2023 42 / 68



Distributed Variational Inference e § Distributed Gaussian Variational Inference

DGVI for Kernel Classification

For agent i's observation z = (x, y) with classification likelihood, and neighbor

. -1
estimates ¢(0|,¢,€2; ),
the mean p;+ and information matrix Q; ; of the PDF g;; maximizing DELBO is,

0, — 3" Al cn U, = 3 Aeiin T, (9
JeEN JeN

Qjr = QF, + 70, 0], 0} = TF, - lzﬁtcbX(bXTzﬁt

= - 818,
with unit normal cdf I, =1+ &2 (QF,) 1y, 71 = 1+ 74 (Q2%,) ', and

7= /255 exp (~05[5 (15,) 700 ).

Cooperative estimati Dec 5 2023 43 / 68
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Distributed Variational Inference o § Distributed Mapping: Simulation and Implementation

Distributed Mapping with Intel LIDAR Dataset’

o 3 o o 13 0 2

Training data distributed among 4 agents sharing their inferences, Communication network.
m Observed data z = (x, y) with position x € R? and occupancy label y € {0,1}
m Model features ®, € R'*1 with kernels: &, = [1, ky(x), ..., ki(x)]
Kernel ky(x) = exp(—7|)x — x(5)||?) centered at x(*) with lengthscale ~

m Agent likelihood model with parameters 6 and sigmoid function o:

£(2160) = (&1 0)" (1 — o (] )

8A. Howard and N. Roy. The robotics data set repository (radish), 2003.

Cooperative estimation: Communication and Space
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Distributed Vari.

ional Inference o § ributed Mapping: Simulation and Implementation

Distributed Mapping with Intel LIDAR Dataset

Parth Paritosh

sharing their inferences, Communication network.

10
900 —— nf=200

a

o  Bs00 —— nf=400
>
& 700

06 £
600
a
9

04 £ 500
£ a00

a2 &
“ 300

, . 00 0 400001

O;
=2
8

-10 # Iterations

Free and occupied spaces in blue and orange color respectively with a 1500 features model. Comparing
verification loss with diagonalized covariance model.
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Distributed Variational Inference o § Distributed Mapping: Simulation and Implementation

Implementation: Distributed Mapping with MURO Lab

Turtlebots

Robot 3 Robot 2

Indoor lab space with directed communication (top), Training data collected and maps predicted by the 3

Parth Paritosh

Turtlebots (bottom).
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Distributed Variational Inference o § Distributed Mapping: Simulation and Implementation

Contributions

m Compute a separable version of evidence lower bound for inference

m Distributed Gaussian updates with tractable expectation terms in supervised
learning setting

m Simulation and implementation for distributed robot mapping

Publication:
m P. Paritosh, N. Atanasov and S. Martinez. Distributed Variational Inference for Online
Supervised Learning. Under review at IEEE Transactions on Signal Processing.
m P. Paritosh, S. Lau, N. Atanasov and S. Martinez. Distributed Variational Inference for
Online Estimation: A Distributed Mapping Implementation on Turtlebot4s. Poster at
Southern California Robotics Symposium 2023.
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Distributed Marginal Estimation

Outline

Bickson, 2008
Du et al.,, 2017
Ortiz et al., 2021

Yedidia et al., 2005
Distributed Marginal Estimation
m Research Question
m Decentralized Communication and Storage
m Gaussian Marginal Consensus Algorithm
m Simulation
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Distributed Marginal Estimation

Problem Setup

m Sensing agents N = {1,--- ,n}

with neighbor set N; €3 —"'—__ﬁ4
-

m Agent state: §; € R™

m Neighbor based measurement models \ //
Pi(zil{0;}jen:) = [Ljen; Pi(2;10i, 6))

m Local communication network, ﬁl ------- -»iz
(Weighted adjacency matrix: A) = -

Parth Paritosh Cooperative estimation: Communication and Space Dec 5 2023 49 / 68



Distributed Marginal Estimation

Problem Setup

m Sensing agents N = {1,--- ,n}

with neighbor set N; €3 —"'—__ﬁlt
-

m Agent state: §; € R™

m Neighbor based measurement models \ //
Pi(zil{0;}jen:) = [Ljen; Pi(2;10i, 6))

m Local communication network, ﬁl ------- -»ﬁz
(Weighted adjacency matrix: A) = -

m How to find the true value of agent states 61, --- , 8, with relative measurements
received over the given communication network?
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Distributed Marginal Estimation

Research Question

How to design an inference algorithm to learn true value of variables © . at agent /
using noisy measurements and neighbor estimates at any time?
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Distributed Marginal Estimation e § Research Question

Agent Domains for Distributed Estimation

How do we select the domain X of agent i's estimate?

{6:} {6:,9;} {0;¢ien; {0} jen
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Distributed Marginal Estimation e § Research Question

Agent Domains for Distributed Estimation

How do we select the domain X of agent i's estimate?
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Distributed Marginal Estimation e § Research Question

Agent Domains for Distributed Estimation

How do we select the domain X of agent i's estimate?

{6:} {6:,0;} {0 }jen:™ {0;}jen

10p, Paritosh, N. Atanasov, and S. Martinez, , “Hypothesis assignment and partial likelihood averaging for cooperative estimation”, In IEEE
Conference on Decision and Control, 2019, pp. 7850-7856.
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Distributed Marginal Estimation e § Research Question

Agent Domains for Distributed Estimation

How do we select the domain X of agent i's estimate?

{6:} {6:.9;} {0 tjen: 10;}jen
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Distributed Marginal Estimation e § Research Question

Existing Solutions

How do we select the domain X of agent i's estimate?
{0} {00} 10 }jen: {0 }jen
(4 (4

Belief propagation ---------------- [ Geometric updates

m Yedidia et al.}%(2003): Learning marginal density at each agent state via Belief
propagation in forest type graphs

m Nedich et al.1}(2017): Convergence rates of geometric averaging of inferences for
the decentralized communication problem

11 Jonathan S. Yedidia, William T. Freeman, and Yair Weiss. "Understanding belief propagation and its generalizations.” Exploring artificial
intelligence in the new millennium 8 (2003): 236-239.

11Angelia Nedi¢, Alex Olshevsky, and César A. Uribe. " Fast convergence rates for distributed non-bayesian learning.” |IEEE Transactions on
Automatic Control 62.11 (2017): 5538-5553.
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Decentralized Marginal Objective

Decentralized communication with marginal state estimates (Ox; = {Ok }ken;)
m Consensus: Ensuring that agents achieve the same estimate on common
domain @Mj = {Qk}ke/\/,- N {ak}keM
m Likelihood update: Including likelihood information at each time step

pi = arg min E E [~ log(4i(zi,:|©n;))] (Agent objective)
Pi zj ¢~ (20 t) @/\f,-"’ﬁi

s.t. pi(On;) = pi(On;), Vi €N; (Marginal consensus constraint)
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Distributed Marginal Estimation e § Decentralized Communication and Storage

Marginal Consensus Step

m p;+(©u;): Estimated density function by agent i on variables contained in A;
m p;+(On;): Marginal density of p;:(©x;) computed over the common set of
variables at agent j

Geometric marginal mixing with stochastic weights

Pi,t(©n7;) :/ pi.:(On;) (Common marginal)
SIVACIV

pi,t(ON;) " :

Pi.t(OnN;|OnN;) = —F=—5 Conditional densit
t( 1©On;) Pi,t(@N,-j) ( y)
Bii.+(On;) = Pi.t(ON;|ON;)Pjt(On;) (Include marginal information)

LA .
Vi,e(Onr) o H Pj,-,Jt(@J\f,-) (Mixing step)
JEN;
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Distributed Marginal Estimation e § Decentralized Communication and Storage

Analyzing Marginal Consensus Step

m Marginal consensus manifold
— set of marginals consistent with some joint p
- M ={{pit}1| > i Drolpis pitl =0, pit € Fo,, P € F}
m For any PDF p € F, the mixed and original PDFs {v; +},{pj +},

— > i1 Dilpi, viel < 300 Diulpi, piel
— equality iff the original PDFs {p; ;} € M

m With marginal consensus steps to PDFs {p; +} in connected networks,

— the resulting PDF limj_, pfft) lies in the consensus manifold M.
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Distributed Marginal Estimation e § Decentralized Communication and Storage

Proposed Marginal Consensus Estimation Algorithm

Ajj
vit(On) x H <p’:(@j\/))pj t(@Nij)) (Mixing step)
JEN; Pi u

. oF
pi.t+1(On;) = arg pf’g}nm {at <5P(Pi,t, Zit), P> - DKL(PHVi,t)}
— 11(zi.1|ON)*vi.e(On) /(/e (z.:O8) v t(@,\/,)d@N,)
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Distributed Marginal Estimation e § Decentralized Communication and Storage

Analyzing marginal consensus estimation algorithm

m Assuming variable independence p; (O ;) = [yco,, Pit(f)

— convergent PDF on Marginal consensus manifold,

1
- ﬁt(e) = HQE@ ﬁt(e)a ﬁt(e) o8 HjeN(Q) pj,t(a) Ol
— where set of agents observing 0 is N'(6)
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Distributed Marginal Estimation e § Decentralized Communication and Storage

Analyzing marginal consensus estimation algorithm

m Assuming variable independence p; +(Ox;) = HoeeN,. pi +(6)
— convergent PDF on Marginal consensus manifold,
1
— Pe(©) = [Ipeo Pe(6), Pe(0) o< [1;cnr(o) Pr.e(0) VT
— where set of agents observing 6 is N(6)

m With independent observations, connected network, bounded gradients, square
summable step-sizes and variable independence,

— the marginal PDF estimates {p; ;: }ienr 23 B(FF,€) ,
— where the e-partial neighborhood of optimal PDF p* € F* is,

Bi(F*.€) = { pi € Fi|_min Du[p}. pi] < € pf = / P b
p*EF* X\
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Distributed Marginal Estimation e § Decentralized Communication and Storage

Gaussian Marginal Consensus Algorithm

Gaussian estimates with log-linear likelihoods lead to Gaussian posterior.

-1
Consider a Gaussian PDF ¢ ({zl] [Zl} 7 [811 812] )
2 2 21 22
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Distributed Marginal Estimation e § Decentralized Communication and Storage

Gaussian Marginal Consensus Algorithm

Common marginal Marginal density w.r.t. 6;:

_ -1
¢(91)M17 (Qu1 — Q12957 1) )
pi,e(On;) =/ Pi.t(On7) . o

ON;\Ow; Conditional distribution

Conditional density (X1|X2 = 62) ~ N (1 — Qi Q202 — p2), Qfll)

pi.t(ON;)

(On 0N =
p,t( M’ /\/u) pi,t(e./\/',“)
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Distributed Marginal Estimation e § Decentralized Communication and Storage

Gaussian Marginal Consensus Algorithm

Common marginal Marginal density w.r.t. 6;:

_ -1
¢(91)M17 (Qu1 — Q12957 1) )
pit(On;) :/ pi,t(On;)

ON;\Ow; Conditional distribution
Conditional density (Xi1|X2 = 62) ~N (Ml — 9;11912(92 — 1), Qlfll)
Pi,t(ON;)
Pi,t(ON:|ON;) = =% _
o O) Pi,t(On;) Marginal distribution of X>: N(ﬁ2,§22_21)

o . Joint distribution of (X1, X2)
Conditional marginal product:

—1
~ p1+ Qi Quope — i2)| [Qun L
Bii,t(On7) = pi.t(ON;1On;)pj,t(On;) ([ iz QL Qo + QL
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Distributed Marginal Estimation e § Gaussian Marginal Consensus Algorithm

Gaussian Marginal Consensus Algorithm *?

m Gaussians ¢(0)u;, Q71), Q= S0 AQ;,
H (b(e',uh Qi_l)Ai = ¢<9‘Q;1 Z A,’Q,‘/J/,', Qv_v1>
i=1 i=1

m Mixing step

LA
vie(On;) o H Pji,jt(@/\f,-)

JEN; m Likelihood f;(z,"t|@_/\/,.) = ¢(Zi,t|Hi@./\/',-a V,),
m Likelihood update &(zie|HiON;, Vi D)o (Opii 11, Q7Y) =
T LT
pie+1(07) o £i(zi | O )" vio(Oy) N (R Vit +) U7 Vit )

. (H" ViH; + Qi)_1>

1p, paritosh, N. Atanasov, and S. Martinez, “Marginal density averaging for distributed node localization from local edge measurements”, In IEEE
Conference on Decision and Control, 2020, pp. 2404-2410.
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Distributed Marginal Estimation e § Simulation

Estimation with Log-Linear Marginal Likelihoods

m A 10-node network with unknown locations 6 = [0;]icar, 0; € R2.
m Observations: zj = (6; —0;) +€,e ~ N(0, V;), Vi =1
m Agent observation model £i(zi|0) = ¢(zj — Hif, V;), H; € {—1,0,1}%!%x;x2I0x;]
m pi(On;) = d(On: | 1ig, Ql_tl) Estimated normal density representing variables
in Ox; with mean p;+ and covariance Q,_tl

Existing algorithms

m Belief propagation
m Full state updates

m Proposed algorithm
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Distributed Marginal Estimation e § Simulation

Self-State Estimates

Belief propagation(BP), full state(FS) and marginal state estimates(MS) for a
10-agent ring network

15 Belief estimates Full state

15 15 Conditional estimates

(Row 1) Convergence to true

positions
15 . .
o (Row 2) Estimation error across
8 | s | s time
6 6 6
4 4 4

~
~
~

0 0 0
0 100200 300 400 500 600 700 0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
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Distributed Marginal Estimation e § Simulation

Effect of Edge Density

Estimation in multiple 10-node graphs with

£

Final error
&

-5

number of edges in {9,--- ,45}.

k.1

w#e Belief Propagation + 444 Belief Propagation
®®g Full state E v¥y Full state
. vv¥ Marginal consensus 5 . 090 Marginal consensus
. . w0
- . .
O
N . 15
s 10
. | i
. v 5
a E g .
a ] e 0 ")
_5 .
3 4 5 3 T ] -1 0 1 2 3 4 5
Graph diameter Fiedler Eigenvalue

Figure: Error in self position estimates via BP, full and partial state estimation algorithms.
(a) With increasing graph diameter after 500 steps. (b) With increasing connectivity captured
by Fiedler Eigenvalue.
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Distributed Marginal Estimation e § Simulation

Marginal Distributed Mapping

Classification model on parameters ©:
m Observed data z = (x, y) with input x € R"! and label y € {0,1}
m Model features ®;(x) € R/ with kernel elements:

®i(x) = [L, ki(x), - .., ki(x)], ks(x) = exp(—][x = x(||?)

m Agent likelihood model with parameters ©; and sigmoid function o

U(2]0x;) = o(®i(x) TON )Y (1 — o (®i(x) " ON;)) .
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Distributed Marginal Estimation e § Simulation

Marginal Distributed Mapping

Agent estimates pdf pj ¢11 = ¢(-|pit+1, Qi ¢41) from mixed pdf Pt = ¢(-\u}’,t, Q){t)
using variational inference,

Qiei1 = Qf — Epy [VE, log £i(2;,611|007)],
pier1 = i + () Epy, [Ve, log i(zi,e41On7)].
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Distributed Marginal Estimation e § Simulation

Distributed Mapping with Intel LIDAR Dataset

m Classification model with 1000 feature points
m Trajectory adjacent models at agents with (208, 195,247,188, 180, 224, 216)

points

- Agent1points
+ Agent 3 points
- Common points -+ "

-2004 * -t

-400

-600

s00 ki s o
~1000 ~750 =500 -250 O 250 500 750 1000

(a) Training data (b) Distinct/ shared feature points (c) Predicted occupancy probability
Figure: Seven agent LiDAR dataset for distributed mapping.

Parth Paritosh Cooperative estimation: Communication and Space Dec 5 2023 64 / 68



Distributed Marginal Estimation e § Simulation

Contributions

m Introduced distributed inference algorithm on partial set of variables

m Marginal consensus characterization and almost sure convergence guarantees

m Developed Gaussian version of the marginal consensus algorithm

m Simulations studying trade-offs with Belief propagation and Full-state algorithms
Publications:

m P. Paritosh, N. Atanasov, and S. Martinez, “Hypothesis assignment and partial likelihood
averaging for cooperative estimation”, In IEEE CDC, 2019, pp. 7850-7856.

m P. Paritosh, N. Atanasov and S. Martinez. Marginal Density Averaging for Distributed
Node Localization from Local Edge Measurements. In IEEE CDC, 2020, pp. 2404-2410.

m P. Paritosh, N. Atanasov and S. Martinez. Distributed Bayesian Estimation in Sensor
Networks: Consensus on Marginal Densities. Submitted to IEEE Transactions on Network
Science and Engineering.
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Distributed Marginal Estimation e § Simulation

Summary

Distributed estimation with mild requirements on connectivity and likelihood
Multi-agent Gaussian and particle estimation algorithms

Distributed variational inference for differentiable log-likelihoods

Multi-robot mapping demonstration in simulation and on Turtlebots

Distributed marginal estimation algorithm analysis

Simulations studying trade-offs with Belief propagation and Full-state algorithms
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Future Directions

Introduction

Estimation in Continuous Spaces
m Distributed Estimation as Optimization
m Convergence guarantees

Distributed Density Estimation
m Proposed algorithm and convergence guarantees
m Cooperative localization and parameter estimation

Distributed Variational Inference
m Distributed ELBO
m Distributed Gaussian Variational Inference
m Distributed Mapping: Simulation and Implementation

Distributed Marginal Estimation
m Research Question
m Decentralized Communication and Storage
m Gaussian Marginal Consensus Algorithm
m Simulation

@ Future Directions
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Future Directions

Future Directions: Scalable Algorithms for Heterogeneous
Sensing Networks

Physics-informed modeling of sensing likelihoods
Information fusion in distributed heterogeneous networks
Reasoning with trust in sensing networks

Providing convergence guarantees for real-time operation

Encoder Decoder

Likelihood
Model

’ ’
>| > 7 \\ 7
4 ’
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Future Directions

Publications

1 P. Paritosh, N. Atanasov, and S. Martinez, “Distributed Bayesian Estimation in Sensor
Networks: Consensus on Marginal Densities”, Under review at IEEE Transactions on
Network Science and Engineering.

2 P. Paritosh, N. Atanasov, and S. Martinez, “Distributed Variational Inference for Online
Supervised Learning”, Under review at Transactions on Signal Processing.

3 P. Paritosh, N. Atanasov, and S. Martinez, "“Distributed Bayesian Estimation of
Continuous Variables Over Time-Varying Directed Networks”, in IEEE Control Systems
Letters, vol. 6, pp. 2545-2550, 2022. (Joint submission with IEEE CDC)

4 P. Paritosh, N. Atanasov, and S. Martinez, “Marginal density averaging for distributed
node localization from local edge measurements”, In IEEE Conference on Decision and
Control, 2020, pp. 2404-2410.

5 P. Paritosh, N. Atanasov, and S. Martinez, “Hypothesis assignment and partial likelihood
averaging for cooperative estimation”, In IEEE Conference on Decision and Control, 2019,
pp. 7850-7856.
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Distributed Estimation Proof Details

Theorem: Convergence Guarantees

m Bounded likelihoods (lower) m Independent Observations m Positive priors

Functional convergence Convergence rate

For square summable step sizes o, the There exis ay < (f[pe] — f[p*])/2L2, the

PDF sequence {p;} converges almost expected objective function satisfies,
surely to an e-divergence neighborhood,

F* a 5 8L2 Dy [p*, po
B(F*,e) = {p € F4 mg; DrL[p*, p] < €} flpe] — f[p*] < @,
p* *

L : = _ 1\t —
around the set of minimizers in F* for any where py = ¢ )_j—1 Pk and minimizer
e>0. p* e F*.
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Distributed Estimation Proof Details

Analyzing marginal consensus estimation algorithm

= Assuming variable independence p;,:(Ox;) = [Iycq,, Pi,t(0)
— convergent PDF on Marginal consensus manifold,
1
= Pe(©) = [Ipeo Pe(6), Pe(0) o< [1;cnr(o) Pr.e(0) VT
— where set of agents observing 6 is N(6)

m With independent observations, connected network, bounded gradients, square
summable step-sizes and variable independence,

— the marginal PDFs {p; ;}ienr converge almost surely to partial
neighborhood B(F7,€) around optimal PDF set F* for any ¢ > 0,
— where the e-partial neighborhood of PDF p* € F* is,

Bi(F*,€) = pi € Fi| min DKL[pf7pl-]§€7p’2*:/ oL
p*EF* X\
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Distributed Estimation Proof Details

Proof Elements

m Define log-probability and log-likelihood terms,
it (6 4i(zi¢|0
ri(6) = log [ 240X g3.4(0) = log [ 2L ]

t

rep1(0) = A Aoro(0) + oY Ar. .. Argi(9).
k=1

Network assumption

Row stochastic weights: A:1 =1, [A¢]ii > 0,
B-connectivity: (A, ULTEE,) is connected Vt > 0.

® Matrix product: [[A¢... Ak]ij — ¢« j| < Ak where \ € (0,1) and ¢ j > >0
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Distributed Estimation Proof Details

Log-Likelihoods can be Unbounded

m Agent observation models: 7;(z]u;, 1) = exp(—0.5(z; — 1;)?)

m Log- likelihood ratio gi2(2;) = log (m1(2)/m2(2)) = 2zi(u1 — p2) + (45 — 113)

Definition: Moment generating functions (MGF)
For a random variable X with density px, MGF v (b) = E[exp(bX)] for any b € R.

m Log likelihoods have a bounded MGF: E [exp (bgi2(zi))] < oo
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Distributed Estimation Proof Details

Assumptions

Row stochastic weights: A:1 =1, [A¢]ii > 0,
B-connectivity: (N, Ufj;’fé’k) is connected Vt > 0.

Finite MGF

The MGF of log-likelihood ratios g; +(x) is finite.

Other assumptions

Positive priors Agents’ prior PDFs p; o(x*) > 0 at optimal values x* € 6*.

Independent observations Independence across time and agents: z;; ~ g;(-|x*).
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Distributed Estimation Proof Details

Large Deviations from the Mean is Improbable

Cramer's theorem
Assume that the MGF ¢(b) of a random variable X; is finite for some b > 0 and let
p=E[X¢]. Then, for any a >y and a running sum S; = 3"} _; X;,

P(S: > at) < exp(—tl(a)),

where /(a) = supp~o{ab — log(y(b))} > 0.

m Relating to convergence rates in Cramer’s theorem:
€ = [At RN Aol’o],', €k — Oz[At ce Akgk],', wk(b) = E[exp(bek)]

(@) = sup <Dt(a, b) = ab — % 3 Iog(wk(b)))

k=0

6/16
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Distributed Estimation Proof Details

Gaussian full state updates

N (it Ql_tl) Normal density representing agent i's estimate over the space X

Qir= Z Qjt-1; pie = Q:tl(z Q‘,tflﬂj,t—l)
JEN; JEN;
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Distributed Estimation Proof Details

Belief Propagation

m m, ;j(0;): Message from agent /i to agent j

m p;+(0;): Agent i's estimate over the variable 6;

mtl_/ ZE ZU|0179 P:t H mye_ 1k_j

kEN\I
Pi,e-1(0i) [ Txen; mii(67)
=1 Pie=1(65) e, mii(65)

Pi,t(ei) =

Parth Paritosh Cooperative estimation: Communication and Space Dec 5 2023 8 /16



Distributed Estimation Proof Details

Gaussian Belief Propagation

A Gaussian BP algorithm for agents with observation model
zi=H [9,- Hj]T +e,e ~ N(0gx1,Q7), with H = [—1, 1] ® 14, where ® is a kronecker
product. The update rule for each agent is given as

. _ -1
e =D Qv e = U | Y Ue-hget |
iEN; iEN;

which depends on the messages sent to j from i € Nj:

Q. = [Qﬁ,t —OjS,t—l 8] 1 H,'TQ,th

v Qi t—1 ki t—
jje = Q1 <|:Zke{/\/,-\,} Ok,t 14k ¢ 1] N HiTQfZij,t>-

i.iyt
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Distributed Estimation Proof Details

Marginal Averaging Algorithm

We present the Gaussian estimate equivalent to the four algorithm steps in the
following lemmas. Here, we denote a Gaussian random variable N(z, Q1) with mean
and information matrix as 2, and its associated density function as ¢(-|u, Q71).

Neighbor messages

-1
{Zl] , {gn 812] ) with respect
2 21 22

The marginal density of the Gaussian PDF ¢ ([gj

to #; is given as,

¢(91‘u1, (Qu — Q1292_21921)_1)-

10 / 16
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Distributed Estimation Proof Details

Gaussian Marginal Algorithm

Pre-edge merging

Let (X1, X2) be random vectors represented by a joint Gaussian distribution with

Q11 ng]. The PDF associated with
Q1 Qo

mean [Ml] and information matrix Q = [
2
conditional distribution is,(X1| X2 = 62) ~ N (Hl — Ql_llng(Hg — [2), Ql_ll)

Edge merging

Let Xi, X5 be random vectors with a joint Gaussian dlstrlbutlon Assume that X
conditioned on X5 = x» is distributed as N(ul Qll Qi2(x2 — p2), Q1 ) and that the

marginal distribution of X5 is N(pg, 2 ) Then, X7 and X5 joint dlstrlbutlon is

N ({m + Qﬂllez(uz - ﬁz)] ’ [911 i Q- }1> |

fi2 QL Qo+ Q505 Qo
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Distributed Estimation Proof Details

Gaussian Marginal Algorithm

Lemma (Geometric averaging)

Let Q, = > I, AiQ;. The weighted geometric product of Gaussian density
functions ¢(0|ui, Qi_l),Vi € {1,..., n} with corresponding weights A; is given as,

ﬁ (O, Y = ¢ (9’9.,.,1 Zn: AiQipj, Qw1> :

i=1 i=1

Parth Paritosh Cooperative estimation: Communication and Space



Distributed Estimation Proof Details

Gaussian Marginal Algorithm

Lemma (Likelihood update)

Let the likelihood density be described as (;(z; +|X;) = ¢ (zi¢|HiXi, Vi). Then the
posterior Gaussian density obtained as likelihood prior
product ¢ (Z;’t H; X, V-il) 10} (X,'; u, Qfl) is

]

N ((H Vb, + Q) U Vizie + Qugas), (HTViH;+ Q1))
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Distributed Estimation Proof Details

Self-State Estimates

Belief propagation, full state and partial state estimates for a 10-agent ring network

15 Belief estimates 15 Full state

15 Conditional estimates

(Row 1) Convergence to true

B positions
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Distributed Estimation Proof Details

Self-State Estimates

Belief propagation, full state and partial state estimates for a 10-agent ring network
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Distributed Estimation Proof Details

Comparing the Communicated Information

Transmitting an m-dimensional Gaussian density requires transmitting m + m? floating
point numbers.

Table: Comparing the iterations and communicated units for convergence to the error e = 0.1
in a 25-node graph

Iterations Information units
BP FS CCS BP FS CS
Line NA 18 1356 NA 2203k 1301k

100 edges 9 2 28  29.8k 846.6k 291k
287 edges 7 2 15 blk 1856k 2709k
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Distributed Estimation Proof Details

Decentralized Update

Consensus: Geometric mixing with stochastic weights

i A z A ..
Vie= =, 1P ZLir= Hpjlf (Mixing step)
Zi,t j=1 fex j=1 ’

Likelihood update: SMD algorithm

oF
i = [ <~ _\Pit; 4it) D i
Pie+1 = arg min {O‘f<5p (pit, zit) P> + KL(PHV,t)}

m

~exp (at%> " / ( / exp(at%)v,-,t(e)de)
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