

FOR ONLINE SUPERVISED LEARNING

Parth Paritosh*, Nikolay Atanasov †& Sonia Martínez †

DEVCOM US Army Research Laboratory, [†]Contextual Robotics Institute, UC San Diego Funded by NSF, ARL & ONR

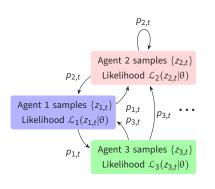
IEEE CDC 2025 - Rio de Janeiro

Available at pptx.github.io/pparitosh/publications.html

THE NEED FOR REAL-TIME DISTRIBUTED INFERENCE

- Heterogeneous sensing
- Distributed, private data collection
- Data sharing is expensive
- Online inference
- Quantified uncertainty in inference
- Computation is spread out

REAL-TIME DISTRIBUTED BAYESIAN INFERENCE



- Non-linear heterogeneous likelihoods
- Distributed communication
- Online probabilistic inference

Goal: Design a distributed real-time approximate inference algorithm for learning probability density function $p(\theta)$ over unknown θ .

VARIATIONAL INFERENCE: BACKGROUND

- Bayes' rule: Posterior on θ satisfies $p(\theta|z_{\leq t}) = \frac{\mathcal{L}(z_t|\theta) \ p(\theta|z_{< t})}{p(z_t|z_{< t})}$ Normalization factor
- Computing normalization factor is intractable (unless conditionally conjugate)
- Approximate posterior via a variational family of distributions $q(\theta) \in \mathcal{F}$
- Maximize Evidence Lower Bound (ELBO) on the normalization factor,

$$p(z_t|z_{< t}) \ge \underset{q(\theta)}{\mathbb{E}} [\log \mathcal{L}(z_t|\theta) - \log(q(\theta)) + \log p(\theta|z_{< t})].$$

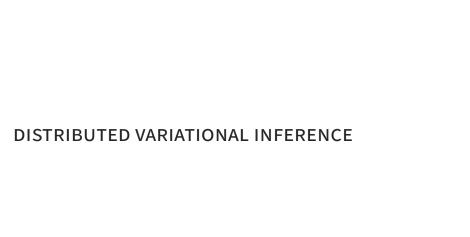
• In recursive settings, replace prior $p(heta|z_{< t})$ with $q_{t-1}(heta)$

VARIATIONAL INFERENCE: BACKGROUND

- Bayes' rule: Posterior on θ satisfies $p(\theta|z_{\leq t}) = \frac{\sum_{\substack{\text{Likelihood} \\ p(z_t|z_{< t})}}{\sum_{\substack{\text{Normalization factor}}}}$
- Computing normalization factor is intractable (unless conditionally conjugate)
- Approximate posterior via a variational family of distributions $q(\theta) \in \mathcal{F}$
- Maximize Evidence Lower Bound (ELBO) on the normalization factor,

$$p(z_t|z_{< t}) \ge \underset{q(\theta)}{\mathbb{E}} \big[\log \mathcal{L}(z_t|\theta) - \log(q(\theta)) + \log p(\theta|z_{< t}) \big].$$

• In recursive settings, replace prior $p(\theta|z_{< t})$ with $q_{t-1}(\theta)$



THEOREM: DISTRIBUTED EVIDENCE LOWER BOUND (DELBO)

Connected network,

Assuming:

- Independent observations z_i from likelihoods $\mathcal{L}_i(z_i|\theta)$,
- Approximate agent PDFs $q_i(\theta) = q_t(\theta)$ for some PDF $q_t(\theta)$,

the <u>separable</u> distributed evidence lower bound (<u>DELBO</u>) on the normalization factor is,

$$p(z_t|z_{< t}) \ge J_t[q_1, \dots, q_n] = \sum_{i \in \mathcal{V}} J_{i,t}[q_i],$$

$$J_{i,t}[q_i] = \mathbb{E}_{q_i(\theta)} \left[\mathcal{L}_i(z_{i,t}|\theta) - \frac{1}{n} \log(q_i(\theta)) + \sum_{j \in \mathcal{V}} \frac{A_{ij}}{n} \log p_j(\theta|z_{< t}) \right].$$

where A is the adjacency matrix representing connected networks.

THEOREM: DISTRIBUTED EVIDENCE LOWER BOUND (DELBO)

Connected network,

Assuming:

- Independent observations z_i from likelihoods $\mathcal{L}_i(z_i|\theta)$,
- Approximate agent PDFs $q_i(\theta) = q_t(\theta)$ for some PDF $q_t(\theta)$,

the $\underline{\text{separable}}$ distributed evidence lower bound ($\underline{\text{DELBO}}$) on the normalization factor is,

$$p(z_t|z_{< t}) \ge J_t[q_1, \dots, q_n] = \sum_{i \in \mathcal{V}} J_{i,t}[q_i],$$

$$J_{i,t}[q_i] = \mathbb{E}_{q_i(\theta)} \left[\mathcal{L}_i(z_{i,t}|\theta) - \frac{1}{n} \log(q_i(\theta)) + \sum_{i \in \mathcal{V}} \frac{A_{ij}}{n} \log p_j(\theta|z_{< t}) \right],$$

where \boldsymbol{A} is the adjacency matrix representing connected networks.

GAP BETWEEN NORMALIZATION FACTOR AND DELBO

The gap between $p(z_t|z_{< t})$ and $J_t[q_1,...,q_n]$ decomposes into:

1. Distributed model error:

$$\frac{1}{n} \sum_{i=1}^{n} \mathsf{KL}[q_{i,t}(\theta) || p(\theta | z_{\leq t})]$$

Divergence of the approximated local posterior $q_{i,t}$ from the truth.

2. Consensus error:

$$\frac{1}{n} \sum_{i \in \mathcal{V}} \mathsf{KL}[p_g || p_i(\theta | z_{< t})], \quad p_g = \frac{\prod_i p_i(\theta | z_{< t})^{1/n}}{\int \prod_i p_i(\theta | z_{< t})^{1/n} d\theta}$$

Disagreement between true local posteriors and their geometric average.

OPTIMIZING DELBO TO COMPUTE VARIATIONAL DENSITIES

- Replace neighbor priors $p_j(\theta|z_{< t})$ with approximations $q_{j,t-1}(\theta)$
- Optimize each component of the separable objective $J_{i,t}[q_i]$,

$$q_{i,t}(\theta) \in \arg\max_{q_i} \mathbb{E} \left[n \mathcal{L}_i(z_{i,t}|\theta) - \log(q_i(\theta)) + \sum_{j \in \mathcal{V}} A_{ij} \log q_{j,t-1}(\theta) \right]$$

- Optimal PDF for agent i is $q_{i,t}(\theta) \propto \mathcal{L}_i(z_{i,t}|\theta)^n q_i^g(\theta) \in \arg\max_{q_i} J_{i,t}[q_i]$
 - Mixed PDF $q_i^g(\theta) \propto \prod_{j \in \mathcal{V}_i} q_{j,t-1}(\theta)^{A_{ij}}$ with likelihood exponent n.

How to handle non-conditionally conjugate likelihoods?

Approximate Gaussian variational densities for differentiable likelihoods

OPTIMIZING DELBO TO COMPUTE VARIATIONAL DENSITIES

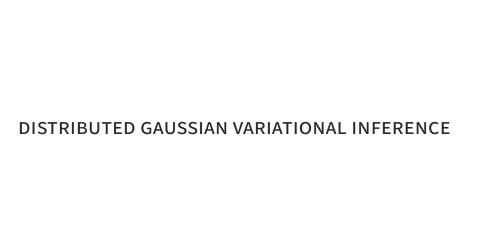
- Replace neighbor priors $p_i(\theta|z_{< t})$ with approximations $q_{i,t-1}(\theta)$
- Optimize each component of the separable objective $J_{i,t}[q_i]$,

$$q_{i,t}(\theta) \in \arg\max_{q_i} \mathbb{E}\left[n \mathcal{L}_i(z_{i,t}|\theta) - \log(q_i(\theta)) + \sum_{j \in \mathcal{V}} A_{ij} \log q_{j,t-1}(\theta)\right]$$

- Optimal PDF for agent i is $q_{i,t}(\theta) \propto \mathcal{L}_i(z_{i,t}|\theta)^n q_i^g(\theta) \in \arg\max_{q_i} J_{i,t}[q_i]$
 - Mixed PDF $q_i^g(\theta) \propto \prod_{j \in \mathcal{V}_i} q_{j,t-1}(\theta)^{A_{ij}}$ with likelihood exponent n.

How to handle non-conditionally conjugate likelihoods?

Approximate Gaussian variational densities for differentiable likelihoods



DISTRIBUTED GAUSSIAN VARIATIONAL INFERENCE (DGVI)

At agent *i* and time *t*, given:

- observation $z_{i,t}$ with likelihood $\mathcal{L}_i(z_{i,t}|\theta)$,
- neighbor estimates $q_{j,t-1}(\theta) = \mathcal{N}(\theta|\mu_{j,t-1},\Omega_{j,t-1}^{-1})$,
- Neighbor weights in communication matrix A,

Mean $\mu_{i,t}$ and information matrix $\Omega_{i,t}$ of the DELBO minimizing PDF $q_{i,t}$ are,

$$\begin{split} &\Omega_{i,t}^g = \sum_{j \in \mathcal{V}} A_{ij} \Omega_{j,t-1}, \Omega_{i,t}^g \mu_{i,t}^g = \sum_{j \in \mathcal{V}} A_{ij} \Omega_{j,t-1} \mu_{j,t-1} \\ &\Omega_{i,t} = \Omega_{i,t}^g - n \mathbb{E}_{q_{i,t}^g} \big[\nabla_{\theta}^2 \log \mathcal{L}_i(z_{i,t}|\theta) \big], \\ &\mu_{i,t} = \mu_{i,t}^g + n (\Omega_{i,t}^g)^{-1} \mathbb{E}_{q_{i,t}^g} \big[\nabla_{\theta} \log \mathcal{L}_i(z_{i,t}|\theta) \big]. \end{split}$$

ADAPTING DGVI TO SUPERVISED LEARNING

Problem: Approximate $\mathbb{E}\left[\nabla_{\theta} \log \mathcal{L}(z_{i,t}|\theta)\right]$ for real-time computation:

- Agent likelihoods generated by kernel-based classifiers/regressors
- Expectation approximated w.r.t. the mixed Gaussian PDF:

$$q_{i,t}^g = \phi(\theta|\mu_{i,t}^g, (\Omega_{i,t}^g)^{-1})$$

CLASSIFICATION MODEL

- Observed data z = (x, y) with input $x \in \mathbb{R}^d$ and label $y \in \{0, 1\}$
- Model features $\Phi_x \in \mathbb{R}^{l+1}$ with kernel elements:

$$\Phi_X = [1, k_1(x), \dots, k_l(x)], k_s(x) = \exp(-\gamma ||x - x^{(s)}||^2)$$

• Agent likelihood model with parameters θ and sigmoid function σ :

$$\mathcal{L}(z|\theta) = \sigma(\Phi_x^{\mathsf{T}}\theta)^y (1 - \sigma(\Phi_x^{\mathsf{T}}\theta))^{1-y}$$

DGVI FOR KERNEL CLASSIFICATION

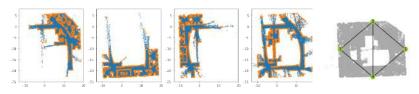
For agent *i*'s observation z = (x, y) with classification likelihood, and neighbor estimates $\phi(\theta|\mu_{i,t}, \Omega_{i,t}^{-1})$,

the mean and information matrix $\mu_{i,t}$, $\Omega_{i,t}$ of DELBO maximizing PDF $q_{i,t}$ is,

$$\begin{split} &\Omega_{i,t}^g = \sum_{j \in \mathcal{V}} A_{ij} \Omega_{j,t-1}, \ \Omega_{i,t}^g \mu_{i,t}^g = \sum_{j \in \mathcal{V}} A_{ij} \Omega_{j,t-1} \mu_{j,t-1}, \Sigma_{i,t}^g = (\Omega_{i,t}^g)^{-1} \\ &\Omega_{i,t} = \Omega_{i,t}^g + \gamma \Phi_X \Phi_X^\top, \Omega_{i,t}^{-1} = \Sigma_{i,t}^g - \frac{\gamma}{\gamma_1} \Sigma_{i,t}^g \Phi_X \Phi_X^\top \Sigma_{i,t}^g \\ &\mu_{i,t} = \mu_{i,t}^g + \left(y - \Gamma \left(\xi \Phi_X^\top \mu_{i,t}^g / \sqrt{\beta} \right) \right) \Omega_{i,t}^{-1} \Phi_X \end{split}$$

with unit normal cdf Γ , $\beta = 1 + \xi^2 \Phi_X^\top (\Omega_{i,t}^g)^{-1} \Phi_X$, $\gamma_1 = 1 + \gamma \Phi_X^\top (\Omega_{i,t}^g)^{-1} \Phi_X$ and $\gamma = \sqrt{\frac{\xi^2}{2\pi\beta}} \exp\left(-0.5\left[\frac{\xi^2}{\beta}(\mu_{i,t}^g)^\top \Phi_X \Phi_X^\top \mu_{i,t}^g\right]\right)$.

DISTRIBUTED MAPPING WITH INTEL LIDAR DATASET 1



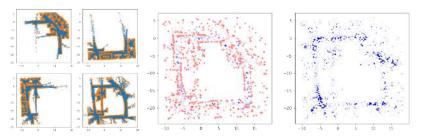
Training data distributed among 4 agents sharing their inferences, Communication network.

- Observed data z = (x, y) with position $x \in \mathbb{R}^2$ and occupancy label $y \in \{0, 1\}$
- Model features $\Phi_X \in \mathbb{R}^{l+1}$ with kernels: $\Phi_X = [1, k_1(x), \dots, k_l(x)]$
- Kernel $k_s(x) = \exp(-\gamma ||x x^{(s)}||^2)$ centered at $x^{(s)}$ with lengthscale γ
- Agent likelihood model with parameters θ and sigmoid function σ :

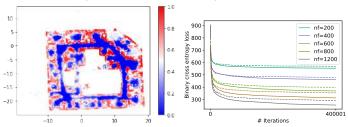
$$\mathcal{L}(z|\theta) = \sigma(\Phi_x^\top \theta)^y (1 - \sigma(\Phi_x^\top \theta))^{1-y}$$

¹A. Howard and N. Roy. The robotics data set repository (radish), 2003.

DISTRIBUTED MAPPING WITH INTEL LIDAR DATASET

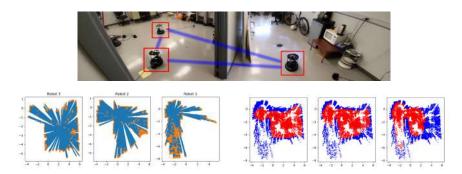


Training data sampled by 4 cooperative mapping agents, Estimated mean μ_T and variance Σ_T of the parameter θ on 1200 feature points $x^{(s)}$.



Free and occupied spaces with a 1500 features model. Verification loss with diagonalized covariances.

IMPLEMENTATION: DISTRIBUTED MAPPING WITH TURTLEBOTS



Indoor lab space with directed communication (top), Collected training data and predicted maps by the 3 Turtlebots (bottom). 2

²Source code available at github.com/pptx/distributed-mapping

CONTRIBUTIONS

- Devise a separable version of evidence lower bound for inference
- Distributed Gaussian updates with tractable expectation terms in supervised learning setting
- Simulation and implementation for distributed robot mapping

Publications

- Parth Paritosh, Nikolay Atanasov, and Sonia Martínez, "Distributed Variational Inference for Online Supervised Learning," IEEE Transactions on Control of Network Systems, vol. 12, no. 3, pp. 1843–1855, 2025.
- P. Paritosh, S. Lau, N. Atanasov and S. Martinez. Distributed Variational Inference for Online Estimation: A Distributed Mapping Implementation on Turtlebot4s. Poster at Southern California Robotics Symposium 2023.

CONTRIBUTIONS

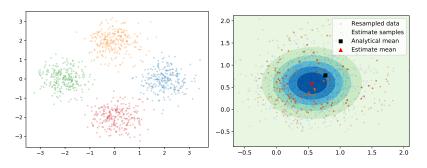
- Devise a separable version of evidence lower bound for inference
- Distributed Gaussian updates with tractable expectation terms in supervised learning setting
- Simulation and implementation for distributed robot mapping

Publications:

- Parth Paritosh, Nikolay Atanasov, and Sonia Martínez, "Distributed Variational Inference for Online Supervised Learning," IEEE Transactions on Control of Network Systems, vol. 12, no. 3, pp. 1843–1855, 2025.
- P. Paritosh, S. Lau, N. Atanasov and S. Martinez. Distributed Variational Inference for Online Estimation: A Distributed Mapping Implementation on Turtlebot4s. Poster at Southern California Robotics Symposium 2023.

Thank You!

A CASE STUDY: GEOMETRIC MIXING VIA SAMPLING



- (a) Samples from Gaussian priors $p_{i,0}$ with unit covariance and means on a circle of radius 1. (b) Comparing analytical mean and PDF estimated via particles resampled w.r.t. probability weights A_{ij} for data $z_{1,1} = [1,1]$,.
 - Bayesian update with mixed PDF $q_i^g(\theta) = \prod_{j \in \mathcal{V}_i} q_{j,t-1}(\theta)^{A_{ij}}$:

$$q_{i,t}(\theta) = \mathcal{L}_i(z_{i,t}|\theta)^n q_i^g(\theta) / \int \mathcal{L}_i(z_{i,t}|\theta)^n q_i^g(\theta) d\theta$$

▶ Return to main slide

DISTRIBUTED REGRESSION MODEL

• Agent *i* samples observation $z_i = (x, y)$ from:

$$\mathcal{L}_i(z_i|\theta) \propto \exp(-0.5(y - \Phi_X^\top \theta)^\top S_i(y - \Phi_X^\top \theta)),$$

• Assuming a linear model $y = \Phi_x^T \theta$ with feature vector:

$$\Phi_X = [1, k_1(x), \dots, k_l(x)]$$

with elements $k_m(x)$ defined in Classification model ($ightharpoonup \operatorname{slide}$).

DISTRIBUTED REGRESSION VIA VARIATIONAL INFERENCE

Proposition (DGVI for kernel regression)

For data (x, y) and neighbor estimates $\phi(\theta|\mu_{j,t-1}, \Omega_{j,t-1}^{-1})$ received by agent i at time t in an n node network, the Gaussian density $q_{i,t}(\theta) = \phi(\theta|\mu_{i,t}, \Omega_{i,t}^{-1})$ maximizing DELBO for regression is,

$$\Omega_{i,t}^{g} = \sum_{j \in \mathcal{V}} A_{ij} \Omega_{j,t-1}, \Omega_{i,t}^{g} \mu_{i,t}^{g} = \sum_{j \in \mathcal{V}} A_{ij} \Omega_{j,t-1} \mu_{j,t-1}
\Omega_{i,t} = \Omega_{i,t}^{g} + n \Phi_{x} S_{i} \Phi_{x}^{\top}, \Sigma_{i,t}^{g} = (\Omega_{i,t}^{g})^{-1}
\Omega_{i,t}^{-1} = \Sigma_{i,t}^{g} - \Sigma_{i,t}^{g} \Phi_{x} ((nS_{i})^{-1} + \Phi_{x}^{\top} \Sigma_{i,t}^{g} \Phi_{x})^{-1} \Phi_{x}^{\top} \Sigma_{i,t}^{g}
\mu_{i,t} = \mu_{i,t}^{g} + n(\Omega_{i,t})^{-1} (\Phi_{x} S_{i}^{\top} y - \Phi_{x} S_{i} \Phi_{x}^{\top} \mu_{i,t}^{g})$$
(2)

▶ Return to main slide